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 8 
Abstract – Changing climatic conditions are contributing to faster deterioration of building fabric. 9 
Increasing number of heavy rainfall events can particularly affect historic and Cultural Heritage 10 
(CH) buildings. These evolving and uncertain circumstances demand more frequent survey of 11 
building fabric to ensure satisfactory repair and maintenance. However, traditional fabric surveys 12 
have been shown to lack efficiency, accuracy and objectivity, hindering essential repair operations. 13 
The recent development of reality capture technologies, together with the development of 14 
algorithms to effectively process the acquired data, offers the promise of transformation of 15 
surveying methods. 16 

This paper presents an original algorithm for automatic segmentation of individual masonry units 17 
and mortar regions in digitised rubble stone constructions, using geometrical and colour data 18 
acquired by Terrestrial Laser Scanning (TLS) devices. The algorithm is based on the 2D Continuous 19 
Wavelet Transform (CWT), and uniquely it does not require the wall to be (nearly) perfectly flat or 20 
plumb. This characteristic is important because historic structures, in particular, commonly present 21 
non-negligible levels of bow and waviness and out-of-verticality.  22 

The method is validated through experiments undertaken using data from two relevant and highly 23 
significant Scottish CH buildings. The value of such segmentation to building surveying and 24 
maintenance regimes is also further demonstrated with application in automated and accurate 25 
measurement of mortar recess and pinning. Overall, the results demonstrate the potential of the 26 
automatic segmentation of masonry units towards more comprehensive and accurate surveys. 27 

Keywords: point cloud processing, heritage science, masonry, stone, surveying, segmentation, 28 
continuous wavelet transform 29 

 30 

1. Introduction 31 

One fifth of all buildings in Scotland are characterised as being historic. This includes more than 32 

400,000 buildings that were constructed before 1919 [1]. It is intuitive that the repair and 33 

maintenance of these aging structures is becoming increasingly onerous due to degradation processes 34 

and the sheer age of the materials employed. Compounding this, it is well recognised that climate 35 

change is placing significant performance strain upon the existing built environment, ostensibly due 36 

to increased intensity and frequency of rainfall events in the UK [2] [3]. Within the context of a 37 

northern maritime climate, these buildings are wetter for longer and are often situated in 38 

environments with low potential evaporation [4]. Increased and accelerated deterioration of porous 39 

building materials subjected to saturated conditions is correlated with higher incidence of high and 40 

low order magnitude spalling associated with frost, increased biological activity, and salt related 41 

damage [5] [6] [7] [8]. 42 

Aging fabric, twinned with increasingly aggressive environmental conditions, necessitates greater 43 

levels of contextualised building survey for effective targeted remedial intervention. Protocols and 44 
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processes currently employed support conservation activities, ideally creating an objective datum for 45 

intervention. Nevertheless, these can be costly to undertake and place significant economic strain 46 

upon individuals and organisations entrusted with satisfactory building upkeep. These protocols are 47 

principally traditional in nature, adopting visual / manual evaluation of masonry elements, down to 48 

individual units. Additionally, inability to effectively record rubble masonry creates communication 49 

problems for those developing repair strategies, specifying remedial works or undertaking fabric 50 

intervention.  51 

Attempts to record via hand drawing is cost prohibitive and is therefore only traditionally undertaken 52 

for buildings of the greatest significance or in the case of specialist studies focusing upon 53 

archaeological analysis or for academic purposes (see [9]). Furthermore, hand drawing is prone to 54 

inaccuracy due to its inherent complexity, resulting from a lack of uniformity, roundness and regularity 55 

of masonry units. Given this, a default of generic hatching (labelling) of the material is applied to 56 

approximate areas to be highlighted. This is clearly insensitive in capturing and reflecting the reality 57 

of the as-built materials confronting the evaluator, hindering attempts to specifically identify areas 58 

requiring further assessment. In these situations, recording is therefore practically reduced to 59 

narrative description of the masonry wall area (in 𝑚2) and cannot effectively reflect the complexity of 60 

the build. Importantly, such recording does not offer the ability to readily locate individual stones in 61 

what could be described as a ‘sea of stones’, causing communication problems for current and future 62 

information retrieval.  63 

Attempts to enhance reporting uniformity have led to the utilisation of system-based approaches or 64 

protocols to survey [10] and whilst helpful, they cannot discount the inherent variation in surveyors’ 65 

experience [11].  66 

The use of state-of-the-art remote sensing technologies offers the promise of enhanced survey 67 

accuracy with the logical benefits that flow from primary characteristics such as cost, safety and 68 

objectivity. Reflecting this, various researchers have cumulatively progressed the body of knowledge 69 

on the value of these new technologies to support building surveying and maintenance activities.  70 

In 1995, Ogleby [12] undertook a comprehensive review of techniques and technologies that existed 71 

for the generation of information adopted for the historic interpretation of monuments and sites of 72 

cultural significance. In that paper, the author focused on photogrammetric applications and the 73 

subsequent generation of CAD models. Further geospatial data acquisition technologies, and more 74 

specifically Terrestrial Laser Scanner (TLS) and photogrammetry, have revolutionized the recording 75 

and documentation aspects of historic buildings. Within the context of historic buildings surveying, 76 

Wilson et al. [13] illustrated the benefits of TLS contextualised upon complex UNESCO World Heritage 77 

sites, adopting a case study approach. Similar advances have been made using photogrammetry, 78 

taking advantage of rapid progress in photographic technology and computer vision. High-resolution 79 

cameras are now widely available at a relatively low cost, and the development of robust automated 80 

feature detection and matching in digital images, (e.g. SIFT [14] or SURF [15] features), as well as dense 81 

matching approaches [16] have considerably improved the image processing stage, enabling entirely 82 

automated processing pipelines. More recently, strategic use of Unmanned Aerial Vehicles (UAVs) for 83 

reality capture has been providing a new platform for photogrammetry to partially solve access issues. 84 

The value of UAVs to surveying has already been demonstrated in various contexts such as for 85 

ecological [17] or structural surveys [18]. These works illustrate how to obviate the use of scaffold and 86 

are therefore clearly beneficial in reducing acquisition time and cost. In the context of historic 87 

monuments, UAV-based photogrammetry has been shown to provide alternative solutions to TLS. For 88 

example, Puschel et al. [19] proposed the use of terrestrial and UAV pictures to capture and create an 89 

accurate 3D model of Castle Landenberg. Koutsoudis et al. [20] similarly proposed a photogrammetric 90 



system combining UAV and terrestrial pictures, and compared the resulting reconstruction with TLS, 91 

obtaining promising results.  92 

These technologies have proven to be effective, delivering accurate 3D and colour measurements. 93 

However, the outcome obtained by the mentioned devices are in raw data form (point clouds) and 94 

require further processing to produce understandable semantically-rich information that can be 95 

interpreted by experts.  96 

With respect to the analysis of geospatial data, initial identification of primary building volumes or 97 

entities can be considered as a 1st order structure tier, with 2nd order tiers including subdivisions into 98 

principle building components such as walls, roofs, etc. The segmentation of the individual masonry 99 

units can be considered as 3rd order structure tier. But, as noted earlier, such segmentation is rarely 100 

conducted, let alone systematically successfully achieved, due to the sheer number of stones, the lack 101 

of uniformity in the materials, and the subjectivity of the individual surveyors observing the structures. 102 

Yet, whilst difficult to achieve, this is an essential component of other tangible processes (i.e. effective 103 

costing of the works and the development of repair strategies).   104 

Within this context, objective and cost-effective data processing methods are required to facilitate 105 

reporting and analysis. Automatic segmentation and further processing of data from modern reality 106 

capture technologies (i.e. TLS and photogrammetry) would facilitate surveying operations undertaken 107 

by surveying experts, enabling them to focus on value-adding activities such as conducting building 108 

pathology from identified defects, and developing in-depth repair strategies. Various research teams 109 

have been specially working on advancing this field. Most prominently, a semi-automatic delineation 110 

and masonry classification was developed by Oses and Dornaika [21] who used Artificial Intelligence 111 

techniques (k-NN classifiers) to identify stone blocks in 2D images. Additionally, Cappellini et al. [22] 112 

proposed a semi-automatic approach to semantically label 2.5D data (colour and depth information) 113 

of brick and stone walls obtained using photogrammetry. 114 

Whilst data segmentation and subsequent calculations, in both visual and computer-based surveys, 115 

are relatively easy to achieve in brickwork, squared coursed rubble and ashlar, these calculations are 116 

inherently more complex in the case of random rubble masonry due to variability in stone and mortar 117 

dimensions. The objective of this paper is to present a novel approach to deal with the segmentation 118 

of masonry walls made of irregular rubble or ‘random’ rubble. The method, detailed in the next 119 

sections, is based on the analysis of 2.5D wall data (acquired by means of TLS) in the spatial frequency 120 

domain, by means of the 2D Continuous Wavelet Transform (CWT). This mathematical tool, as shown 121 

in [23], allows a detailed analysis at local level and is not sensitive to more global levels of flatness, 122 

waviness, curvature and plumbness of walls, which are commonly encountered in historic buildings.  123 

The rest of the paper is structured as follows: Section 2 contains an introduction to the CWT. Section 124 

3 describes the method designed for stone/mortar segmentation. Section 4 presents how such 125 

segmentation can effectively further analysis of value to building surveying and maintenance, with the 126 

example of mortar regression from the masonry surfaces. Section 5 introduces the experiments 127 

carried out to test the developed technique and reports the obtained results. Section 6 concludes the 128 

works and offers directions for future works. 129 

2. 2D Continuous Wavelet Transform for Stone Walls Segmentation 130 

The Wavelet Transform is a signal analysis method that is based on the convolution of the input signal 131 

with a wavelet function at different locations along the signal and at multiple scales. This enables the 132 

detection of the signal pattern of the wavelet function at potentially any scale and at any location [24]. 133 



The Continuous Wavelet Transform (CWT) is one of the several variants of the Wavelet Transform that 134 

is commonly considered for pattern or frequency detection in a signal. This can be applied to solve the 135 

problem of surface waviness characterizations [24]. It is important to highlight that CWT is not only 136 

applicable to 1D signals, but also to 2D signals, as presented in [25].  137 

Applying the CWT, like any other WT, requires the selection of the mother wavelet. One common CWT 138 

wavelet is the Mexican Hat wavelet, as shown in Figure 1. This 2D wavelet is composed of one main 139 

undulation with centre frequency fc that is the same for both dimensions. The centre frequency of the 140 

Mexican Hat wavelet is fc=0.252. By convolving an input 2D signal with the Mexican Hat wavelet at a 141 

given scale a, undulations of characteristic frequency f can be detected; f is calculated as: 142 

 143 

𝑓 =
𝑓𝑐

𝛿𝑝𝑎
 

(1) 

where δp is the point sampling period in the input signal along the given dimension. 144 
 145 

 146 

Figure 1: 3D view of the 2D Mexican Hat wavelet 147 

 148 

In the case of the point cloud of a wall or any other structural surface, the 3D dataset can be 149 

transformed into a depth map (i.e. a 2.5D dataset) with cell size δp. The 2D CWT can then be applied 150 

to the transformed data to detect and precisely locate the stones on the wall. Importantly, the stone 151 

walls, constituted of both ashlar and/or random rubble components, may vary in shape and size, 152 

especially in the case of walls containing rubble. Therefore, the dimension of the stones cannot be 153 

used as a reference scale a for the CWT. However, joints between stones are relatively regular in 154 

width. This expected width can be used to set the scale a at which the CWT must be applied so that it 155 

responds strongly in mortar regions. 156 

 157 

3. Method for stone segmentation and labelling 158 

This section is dedicated to illustrating how the CWT is used to segment individual stones in a 3D point 159 

cloud. 160 

Data acquisition and pre-processing of the data, corresponding to the aforementioned 1st and 2nd 161 

order structure tier classification (wall segmentation), lead to coloured point clouds of the wall face 162 

such as the one depicted in Figure 2. This data is inputted into the segmentation algorithm, which is 163 

summarised in Figure 3. The region highlighted in Figure 2 is used as an example to illustrate the 164 

segmentation process described below. Figure 4 shows the results obtained for that section of wall at 165 

each stage of the process, with Figure 4(a) showing the initial 3D point cloud of that region. 166 



 167 

Figure 2: West wall of Linlithgow Palace courtyard. The highlighted area is used in Figure 4 to illustrate the data processing 168 
stages. 169 

 170 

Figure 3: Overview of the proposed stone segmentation pipeline. The section in the green box includes the operations 171 
performed on each individual stone segment and shadow boxes correspond to 3D data 172 

 173 

First, the data is converted into a 2D depth map (also called 2.5D map) by means of an orthogonal 174 

projection on a (vertical) surface grid defined with a regular sampling 𝛿𝑝. This grid is calculated 175 

following a strategy based on the RANSAC algorithm [26] in the case of walls whose two principal 176 

curvatures are close to zero (i.e. planar walls). If one of these curvature values is not close to zero, 177 

such as with round tower walls, a cylinder is instead calculated as a reference geometry [27]. The value 178 

of each grid depth map pixel is then calculated as the mean distance, to the fitted surface, of the set 179 

of points that fall within it by orthogonal projection. In the case of the use of a cylindrical reference 180 

surface, this is achieved by unwrapping the point cloud using the approach described in [28]. An 181 

example of a depth map is shown in Figure 4(b).  182 

The 2D CWT is applied to the depth map using an estimate of the mortar joint width to define the 183 

scale of interest 𝑎. The CWT process delivers a scalogram, showing the CWT responses at each pixel 184 

in the depth map. Angular values corresponding to scalograms for three different frequencies below 185 

the characteristic frequency f (i.e. defined scale a) are shown in Figure 4(c).; the angular values 186 

obtained for the characteristic frequency f are shown in Figure 4(d). With the objective of avoiding 187 

under-segmentation, a conservative strategy is followed when defining the width of mortar joints, i.e. 188 

the scale a.  The value of a used in this method is 1.2 times a coarse average width of the mortar joints 189 

estimated by the surveyor.  190 

Note that, whilst no value is given for the width of a rubble masonry joint due to the variability of the 191 

masonry deployed (See [29]), certain physical characteristics in the associated use of lime mortars 192 

direct us towards a nominal width dimension of approximately 15-20mm [30]. More specifically, the 193 

relative slow set of lime mortars makes it vulnerable to moisture related shrinkage during curing. This 194 

phenomenon is reduced by adopting a ‘well graded’ aggregate and, in situations where the joint is 195 

wider the utilisation of suitable pinning stones (off cuts or small stones that are pushed or built into 196 



the mortar joint) are adopted. It is therefore empirically essential to keep the overall volume of mortar 197 

in the joint to a minimum, by packing with suitable pinnings, and to thoroughly compact the mortar. 198 

Deviation from this heuristic could result in materials failure. However, it must be noted that such 199 

modern practice did not apply in historic rubble masonry wall, and it is common in such contexts that 200 

the width of mortar joints be 30-40mm. Therefore, in this work, we ask that the surveyor provides as 201 

input an estimate width of mortar joints according to the evaluated façade (which will typically be 202 

either 20mm or 40mm). 203 

The binary image delivered by the 2D CWT contains an approximated segmentation of the stones. 204 

However, as illustrated in Figure 4(d), such irregularities of the surface profile of the rubble stones can 205 

generate concavities that lead to strong responses of the CWT (see small black areas inside the white 206 

segments in Figure 4(d)). To correct this, we make the observation (and assumption) that rubble 207 

stones are normally contained exactly within their convex hull. Thus, we replace each white segment 208 

with its convex hull. Figure 4(e) shows the result. 209 

As previously mentioned, a slightly higher value for the scale a is used as input for the CWT. While this 210 

increases the performance of the segmentation, it also leads to stone segments that are moderately 211 

smaller than their actual size (and conversely mortar joints moderately wider than their actual width). 212 

To correct this effect, an iterative dilation process (1 pixel per iteration) is performed for each stone 213 

segment, considering colour information from the associated point cloud.  214 

At the end of the dilation process, 2D stones segments are considered to be properly defined, as 215 

illustrated in Figure 4(f). Figure 4(g) shows the final segmentation results re-mapped on the 3D point 216 

cloud. 217 

(a)      (b) 218 

(c) 219 



 (d)     (e) 220 

 (f)    (g) 221 

Figure 4: Illustration of the stone segmentation process. a) Input wall 3D point cloud, b) depth map, c) 2D CWT scalogram 222 
for the selected scale a, d) 2D stone segments after convex hull step, e) 2D stone segments after the final dilation step; and 223 

f) final segmentation re-mapped onto the 3D point cloud. 224 

 225 

Importantly, we note that the CWT response is not sensitive to frequencies that are much lower than 226 

the characteristic frequency. This means that variations in the flatness, waviness and curvature of 227 

walls with such low frequency (i.e. large wavelength) do not impact the response of a wavelet used to 228 

detect high frequencies representing mortar joints. Figure 5 illustrates planarity disparities typically 229 

observed in historic masonry walls. This particular wall is used in our validation experiments for which 230 

the results are presented in Section 5. 231 

 232 

 233 

Figure 5: Local depth values in a rampart of Craigmillar Castle (Scotland) 234 

 235 



4. Application of the stone segmentation through further analysis 236 

The segmentation achieved with the described algorithm can be used for the evaluation of materials 237 

and their associated construction technologies. Additionally, when utilised in repeated survey 238 

operations it can move beyond ‘static’ determination of condition and enable analysis of progressive 239 

defects. More specifically, stone segmentation can be used to evaluate changes in individual stones 240 

(e.g. erosion or movement) and record those changes down to individual stone level. Segmented 241 

mortar joint regions can be further analysed to deliver valuable information on their conditions and, 242 

by extrapolation, the effect of deterioration on surrounding masonry.  243 

To demonstrate this, we present an additional data processing algorithm that analyses the mortar 244 

region segments outputted by the previous algorithm to report the mortar region linear measurement 245 

and calculate depth profiles along the mortar centre lines. This constitutes important information to 246 

detect recessed zones, and accurately estimates the quantity of repointing to be undertaken. In 247 

addition, depth of joint recess is a primary mechanism for highlighting vulnerable areas of masonry 248 

that may be subject to progressive loosening of the material if left unattended. The system can also 249 

automatically estimate the mortar region width, which can inform on the need for pinning (a.k.a. 250 

gallets). The following explains the developed algorithm. Figure 6 summarises the approach and Figure 251 

7 illustrates each of its steps. 252 

 253 

Figure 6: Overview of the proposed mortar region analysis pipeline. The objects coloured in orange represent the operations 254 
performed on each individual stone segment 255 

 256 

The depth and binary maps for the mortar region(s) obtained from the segmentation process are used 257 

as inputs in this process. A skeleton operation [31] is first applied to the binary map to obtain the 258 

centre lines of the mortar areas (Figure 7(a)). For each point along the centre line of the mortar 259 

regions, its depth value is compared to those of the neighbouring stones, delivering the depth 260 

difference between stones and mortar (Figure 7(b)). This mortar relative-depth map can be used to 261 

identify recessed regions. 262 

In a similar manner, the orthogonal distance between each point along the centre line and the 263 

neighbouring stones is calculated to obtain a mortar width map, (Figure 7(c)). The depth and width 264 

maps can be employed jointly to calculate the volume of mortar required for repair and determine 265 

areas where pinning stones may be required. This is illustrated in Figure 7Figure 7(d) that has been 266 

produced by assuming that pinning is required where mortar width is larger than the scale a used in 267 

the 2D CWT). 268 



      (a)        (b) 269 

 (c)    (d) 270 

Figure 7: Maps obtained after processing the data of mortar regions. a) Centre lines of the mortar areas (in red). b) Relative 271 
depth of mortar along the centre line (cm). c) Width of mortar along the centre lines (cm). d) Potential pinning stone 272 

locations (in red) 273 

 274 

5. Experimental results 275 

The algorithms presented in the previous sections have been tested with dense point clouds acquired 276 

from several walls at two significant Scottish Cultural Heritage buildings, namely: Craigmillar Castle 277 

and Linlithgow Palace. In the case of Craigmillar Castle, a Faro Focus 3D Laser Scanner digitised the 278 

scene, providing 3D and colour information, with a resolution of 3mm. In Linlithgow Palace, a Leica 279 

P40 Terrestrial Laser Scanner was used for data acquisition, delivering colour and geometric 280 

information, with a resolution of 2mm.  281 

In this section, two different experiments are presented, at both small and large scale, to illustrate: 282 

first, the accuracy of the proposed system and secondly, the potential of the tool to be used for 283 

maintenance, repair and interpretation works in complete walls (i.e. building elevations). 284 

5.1.  Quantitative assessment of the segmentation method 285 

In this subsection, a quantitative evaluation of the method’s accuracy is presented. Three rectangular 286 

sections of masonry with approximate area 30m2 from a Craigmillar Castle rampart wall were selected 287 

(see highlighted areas in Figure 8). Note the presence of blocked-up windows, with stones laid in 288 

different planes, is challenging. 289 

The three regions are at different heights (ground level, 2 and 5 meters) and have been selected for 290 

the diversity of wall conditions they present. 291 



 292 

Figure 8: Three masonry sections selected for assessing the performance of the proposed algorithm 293 

 294 

First, for each selected region, a manual segmentation of the stones’ boundaries is performed on the 295 

colour/depth maps. The resulting segmentation maps (see binary maps in Figure 9) are then used as 296 

ground truth. The results of the automated segmentation achieved by the proposed algorithm is also 297 

shown in Figure 9.  298 

The manual segmentation delivers an area covered by the segmented stones of 18.61 𝑚2. The 299 

proposed algorithm reports that 17.76 𝑚2 is covered by the segmented stones. The difference results 300 

in an error of 4.6%. With respect to the mortar regions, the algorithm estimates 325.37 m of mortars, 301 

whereas the manual segmentation led to 312.06 m, which gives an error of 4.26%. 302 



 303 

Figure 9: Wall segmentation results. a) Section 1, b) Section 2 and c) Section 3. For each section, top: 3D point cloud of the 304 
wall section; middle: manual segmentation of the orthographic projection of the wall; bottom: orthographic projection of 305 

the labelled segments. 306 

 307 



The difference between manual and automatic segmentations is primarily due to four factors (see 308 

Figure 10):  309 

a) Under-estimation: some stones are detected as a combination of smaller stones; 310 

b) Over-estimation: some stones are segmented as a unique stone;  311 

c) False stone: some mortar areas are labelled as stone; and 312 

d) Missing stones: some small stones have not been identified. 313 

 314 

Figure 10: Issues in the segmentation of stones and mortar 315 

 316 

These factors, and their influence on the labelling of the automatically segmented stones are 317 

presented in Table 1. In this table, the ‘One-to-One’ column corresponds to stones in the ground truth 318 

that have been identified as a single stone by the algorithm. The other columns report the statistics 319 

for the four error cases presented above (Figure 10). As can be seen, most stones are successfully 320 

identified as one stone by the algorithm. Under-estimated stones are usually large units that, due to 321 

the irregularity of their face, are wrongly detected as several stones. Over-estimated stones are, on 322 

the contrary, small stones that, because of their close proximity, are labelled as a unique unit. Finally, 323 

missing and false stones, even if relevant in number, noticeably present small areas. 324 

Table 1: Distribution of the differences between manual and automatic segmentations 325 

  
One-to-one 

Under-
estimated 

Over-
estimated 

Missing 
stones 

False 
stones 

1 
Number of stones 219 84 6 22 21 

Median area 53 231 85 11 15 

2 
Number of stones 178 67 59 36 11 

Median area 48 249 28 11 12 

3 
Number of stones 291 92 35 40 16 

Median area 75 204 52 14 12 

 326 

Figure 11 further illustrates the segmentation performance by reporting segmentation quality at 327 

‘pixel’ level. In this figure ‘false negatives’ are regions of stone that are labelled as mortar by the 328 

algorithm, and ‘false positives’ are mortar regions labelled as stone. 329 



 330 

Figure 11: Pixel-level labelling performance results are shown for section 1 (a), section 2 (b) and section 3 (c). Black and 331 
magenta regions are pixels that are correctly recognized as stone (True Positive) and mortar (True Negative) respectively. 332 

Yellow regions are ‘false positives’, i.e. mortar areas that are incorrectly labelled as stone. White regions are ‘false 333 
negatives’, i.e. stone areas that are incorrectly labelled as mortar 334 

 335 

As can be appreciated in Figure 11, an important part of false negative areas come from the frame of 336 

blocked-up windows. These stones are architectural dressed stones. They are not rubble and impact 337 

the results mainly because of the sudden but small change in the local surface plane. Regarding false 338 

positives, these are fundamentally produced when the space between some stones is narrower than 339 

expected (i.e. areas with particularly narrow mortar joints or pinning stones close to a bigger stone). 340 

From a more analytical perspective, several metrics, widely used for image segmentation evaluation, 341 

have been considered to estimate the performance of the proposed algorithms. 342 

Considering the labelling of regions as True Positive (TP), True Negative (TN), False Negative (FN) and 343 

False Positive (FP), the performance of the segmentation of each stone can be given by the correctness 344 

of this labelling. Similar to the metrics presented in [32], True Positive Area Fraction (TPAF) and True 345 

Negative Area Fraction (TNAF) represent the area properly labelled. TPAF measures, for each stone, 346 

the fraction of the stone area that has been properly segmented by the algorithm. On the other hand, 347 

TNAF quantifies the area of mortar correctly identified in the surroundings of each stone. These 348 

parameters are calculated as seen in (1) and (2). 349 

 𝑇𝑃𝐴𝐹 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         with 𝑇𝑃𝐴𝐹 ∈ [0,1] (1) 350 

 𝑇𝑁𝐴𝐹 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
         with 𝑇𝑁𝐴𝐹 ∈ [0,1] (2) 351 

Tanimoto coefficient (Tc) [33] represents a similarity ratio between two images. In this paper, this 352 

coefficient measures the similarity of each manually segmented stone (𝑆𝐴) and its corresponding 353 

segment (or segments) identified by the algorithm (𝑆𝐵) as detailed in (3), 354 

 𝑇𝑐 =
∑ 𝑆𝐴𝑖·𝑆𝐵𝑖

𝑛
𝑖=1

∑ 𝑆𝐴𝑖
2𝑛

𝑖=1 +∑ 𝑆𝐵𝑖
2𝑛

𝑖=1 −∑ 𝑆𝐴𝑖·𝑆𝐵𝑖
𝑛
𝑖=1

     with 𝑇𝑐 ∈ [0,1] (3) 355 



where n is the number of pixels of the bounding box containing 𝑆𝐴 and 𝑆𝐵, and the value of 𝑆𝐴𝑖  (and 356 

𝑆𝐵𝑖) is 1 if the pixel is labelled as stone, and 0 otherwise. 357 

Note that Tc can also be represented by using the labelling illustrated in Figure 11 as shown in (4). 358 

 𝑇𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (4) 359 

Table 2 shows the median, mean and standard deviation values of the aforementioned metrics for all 360 

the stones on the evaluated wall sections. Note that, while Tc and TPAF deliver information about the 361 

performance of stone segmentation, TNAF evaluates the labelling of mortar regions. The relatively 362 

high values of Tc, and TPAF mean that stones areas have been segmented well. On the contrary, the 363 

lower value of the coefficient TNAF implies that mortar regions have been underestimated in size in 364 

some parts, mostly due to the effect of regions with narrow mortar joints (under the aforementioned 365 

scale a) which are not properly segmented. This means that the algorithms classify mortar areas as 366 

stone when stones are too close to one another, increasing the FP coefficient and decreasing TNAF. 367 

Table 2: Segmentation performance parameters 368 

 𝑇𝑐 TPAF TNAF 

Median 0.68 0.83 0.60 

Mean 0.63 0.77 0.58 

Standard deviation  0.20 0.20 0.22 
 369 

5.2.  Applying the developed tool to complete ‘planar’ walls 370 

The previous section shows the promising performance of the algorithm proposed for rubble stone 371 

wall segmentation. In this section, the value of such automated segmentation is demonstrated at 372 

larger scale, for complete walls. Results for the west wall of Linlithgow Palace courtyard (Figure 373 

12(a)) and the rampart facing the east garden of Craigmillar Castle ( 374 

Figure 13(a)) are detailed in the following paragraphs.  375 

In both cases, different architectural components, such as windows, doors, buttresses and 376 

crenellations, have been manually removed from the point cloud, as these elements are not meant to 377 

be processed by means of the method proposed in this paper; they are not ‘wall’ components. Only 378 

the points corresponding to the building component ‘wall’ were processed by the algorithm detailed 379 

above.  380 

Figure 12(b) and  381 

Figure 13(b) show the stones detected in the walls, and Figure 12(c) and  382 

Figure 13(c) the mortar regions with their calculated depth. Figure 12(d) and 383 

Figure 13(d) show locations where pinning may be required. Table 3 summarises information 384 

automatically obtained for both walls. Even though ground truth (i.e. manual) segmentations for the 385 

large datasets have not been generated, visual inspection suggests that the segmentation 386 

performance is similar to that reported above for the smaller section of the Craigmillar Castle wall. 387 



 388 

Figure 12: Linlithgow Palace courtyard west wall. a) 3D coloured point cloud, b) Segmented and labelled stones, c) mortar 389 
depth map and d) Potential pinning stone locations 390 

 391 

Figure 13: Craigmillar east garden rampart. a) 3D coloured point cloud, b) Segmented and labelled stones, c) mortar depth 392 
map and d) Potential pinning stone locations 393 

Table 3: Quantitative parameters extracted after the automatic stone segmentation of Craigmillar and Linlithgow walls 394 

 Craigmillar Castle Linlithgow Palace 

Wall area 21.3 x 6.3m (= 128.42m2 
without buttress area) 

21.5 x 13.5m (= 196.75m2 
without windows and doors) 

Detected stones 2952 3056 

Area covered by stone 70.74𝑚2 128.83𝑚2  

Stone size (mean) 239.63 𝑐𝑚2 421.56 𝑐𝑚2 

Linear measurement of mortar 1.18km 1.44km 

Area covered by mortar 57.68𝑚2 67.95𝑚2 

Depth of centre line of mortar 
(mean ± std) 

0.92cm ± 8.2mm 1.05cm ± 8.2mm 

 395 



As can be noticed in Table 3, the number of stones and the length of mortar is similar in both walls, 396 

although the façade of Linlithgow Palace is twice as large as the one at Craigmillar. This suggests, and 397 

this is computationally confirmed thanks to the automated segmentation, that the Linlithgow stones 398 

are approximately twice as large. These results are interesting from the point of view of estimations 399 

for maintenance and repair works. It shows that rules-of-thumb for estimating the amount of mortar 400 

based on the wall size could easily lead to incorrect results if stone sizes are incorrectly estimated, 401 

which is particularly difficult in cases where stone sizes vary significantly. 402 

5.3. Applying the developed tool to curved walls 403 

As presented in Section 3, the proposed approach for ‘planar’ walls can be easily applied to ‘cylindrical’ 404 

walls by using a point cloud unwrapping procedure (instead of a planar projection method). In this last 405 

section, we show visually the working of this approach with real-life data acquired from a turret of 406 

Craigmillar Castle. Figure 14 shows the original data (a; b), the unwrapped coloured data (c), the result 407 

of the segmentation applied to the unwrapped data (d), and the final segmentation results re-mapped 408 

onto the point cloud (e). 409 

6. Conclusions 410 

This paper has presented a new tool to help conservation and construction professionals better 411 

understand and more objectively evaluate historic rubble masonry during survey operations. The 412 

results obtained demonstrate that reasonably complete and reliable information can be attained by 413 

means of a fast, cost-effective and safe survey strategies adopting these technologies. 414 

Although this approach delivers added value to current surveying techniques and provides important 415 

information for historic interpretation purposes, further works will be conducted to perform analysis 416 

of relevant geometric and colour-related information from stones and mortar. This future research 417 

encompasses the detection and identification of defects on the fabric to keep track of the records and 418 

create a powerful tool for building surveying. 419 

This valuable information will be stored in structured and semantic models, by integrating the 420 

presented method in a holistic solution harnessing Building Information Modelling (BIM) and 421 

Geographic Information Systems (GIS) technologies. 422 
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 (a)                    (b) 432 

 (c)     (d) 433 

 (e) 434 

Figure 14: Stone segmentation for surfaces for a cylindrical turret of Craigmillar Castle (Scotland). a) Region of interest, b) 435 
Input 3D point cloud, c) unwrapped data, d) 2D segmentation map, and e) final segmentation re-mapped onto the 3D point 436 
cloud. 437 
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