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Abstract— This paper presents an integrated system that automatically 2 

provides detailed as-is semantic 3D models of buildings. The system is able 3 

to explore and reconstruct large scenes at a high level of detail, passing 4 

through five semantic levels, finally generating a detailed semantic model of 5 

the building. Our autonomous scanning platform collects raw data regarding 6 

the scene. At the first level of modelling, our autonomous scanning platform 7 

collects data regarding the scene and generates a point cloud that is later 8 

structured in a semantic point cloud model containing indoor, clutter and 9 

outlier point clouds. The second and third levels of semantic models consist 10 

of a simple B-rep representation and a model of basic building components, 11 

which includes the walls, ceiling, floor and columns, as well as their topology. 12 

Openings are then added, thus yielding our fourth semantic model. Finally, 13 

small components in buildings, such as sockets, switches, lights and others 14 

are recognised, resulting in the fifth semantic model. This approach has been 15 

tested on real data of building floors using our Mobile Platform for 16 

Autonomous Digitization (MoPAD). To the authors’ knowledge this is the 17 

first work that, after obtaining 3D data with an autonomous mobile scanning 18 

platform, achieves such detailed modelling of building interiors. The 19 

performance of the method has been assessed quantitatively against ground 20 

truth on simulated and real environments. Two videos are available at the 21 

supplementary material of this paper. 22 

Keywords. Robotic platform, mobile mapping, 3D data processing, 23 
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1 Previous work and contributions 25 

1.1 Semantic as-is building modelling 26 

Building Information Modelling (BIM) is the latest cutting-edge modelling technology 27 

and process in Architecture, Engineering & Construction. Within this new realm of BIM-28 

based project delivery, the generation of precise as-is Building Information Models 29 

(BIMs) capturing the current state of facilities is useful to architects and engineers to 30 

design renovations and refurbishments, compare them with either as-designed models 31 

during construction for quality control, or compare them with prior as-is models during 32 

facility operation for asset monitoring. 33 

A large portion of the effort put into the generation of such models, at least from a 34 

geometric and semantic point of view, has to date required significant human assistance, 35 

which comes with time-consuming human interactions and the risk of human errors.  36 

As detailed in this section, many researchers have been working on the automatic 37 

creation of as-is BIM models with various levels of semantic content (references [1-54]). 38 

The degree of automation and detail in the methods proposed to date ranges from the 39 

automatic acquisition of data capturing the building’s as-is state (typically in the form of 40 

3D point coordinates, with additional colour, temperature, etc.) to the automatic detection 41 

and positioning of structural as well as small building components (e.g. switches). 42 

Based on our experience, we propose to classify the modelling tasks in five consecutive 43 

levels, each of which yielding a model with increasing semantic detail. Figure 1 shows the 44 

semantic levels and the objects extracted at each level. Each level is detailed in the below. 45 

 46 

Figure 1. Levels of Semantic 3D modelling, along with objects extracted using our method. 47 

(1) Semantic Level 1: Automatic data acquisition of the building’s as-is state. The 48 

majority of mobile scanning platforms are commanded or guided by humans. In 49 

general, commanded mobile platforms (e.g. sensorised cars [1]) that perform 50 

permanent scans and digitise the environment cannot be considered as autonomous 51 
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systems. Completely autonomous systems are those that are able to perform 52 

navigation and 3D data acquisition without any initial knowledge of the scene and 53 

without human interaction. Such systems may use prior information to navigate an 54 

indoor or outdoor environment (e.g., service robots with information about tasks to 55 

be performed; UAVs with programmed flight paths for inspection or monitoring, 56 

etc.). During this stage, scan planning and next best scan (NBS) algorithms have to 57 

be tackled. Autonomous mobile scanning platforms, such as those in [2]–[8], aim to 58 

collect sufficient information and roughly represent building indoors [2]–[5], [7], 59 

[8] or building fabric [6]. At this level, the environment is ‘modelled’ with a 3D, 60 

often coloured point cloud, that however lacks semantic information. Recent 61 

proposals of such autonomous platforms can be found in [9] and [10] with ground 62 

robots (GR), [11] and [12] with unmanned aerial vehicles (UAV), and [13] with a 63 

combination of GRs and micro aerial vehicles (MVA). 64 

(2) Semantic Level 2: Simple geometric building model. The goal here is to provide 65 

a simple geometric representation of the large unorganised point-cloud. This 66 

representation is usually created by means of a graph-structure that relates geometric 67 

primitives (i.e. vertex, edge, face, etc), all forming a B-rep representation. Examples 68 

at this level can be found in [14]–[16]. This is obviously a simplified polyhedral 69 

model of the building that still does not contain valuable semantic information. 70 

(3) Semantic Level 3: Recognition and labelling of primary Structural Elements 71 

(SEs) of the building. This is a higher step in which a semantic meaning of the 72 

earlier simplified model is introduced. Some authors present 3D models in which 73 

the objects “wall”, “ceiling”, “floor” and “column” are semantically modelled 74 

([17]–[26]). These objects are sometimes classified by means of context-based 75 

algorithms [23]. More detailed semantic models can be achieved by voxelising the 76 

3D space and labelling each voxel, thus generating a discretised semantic model 77 

(DSM3). Examples of such semantic voxel models can be found in [6], [27], [28]. 78 

(4) Semantic Level 4: Recognition of openings within SEs of the building. We refer 79 

here to the recognition of windows and doors ([18], [23], [25], [26], [29]–[44]), and 80 

details within SEs, such as skirting-boards, baseboards and moldings ([45]). Some 81 

approaches exclusively recognise open ([18], [29]–[37], [41]) or closed ([19], [29], 82 

[30], [33], [38]–[40], [42], [44], [46]) doors, and very few identify semi-closed 83 

doors [39]. Other methods detect concrete and tilted areas in images of walls during 84 

the construction process [47], or deal with pipes and other secondary objects in 85 

industrial facilities using 3D imaging technologies ([48], [49]). 86 

(5) Semantic Level 5: Recognition of small building service components (BSCs) on 87 

SEs. BSCs refer to immovable objects on SEs, such as electrical components or 88 

indoor building signs. Very few methods achieve this level of detail in 3D semantic 89 

building models. Partial solutions that recognise luminaries ([50], [51]) or sockets 90 

([52], [53]) have been published, with most of them framed in robot interaction 91 

applications. Bonanni et al. [54] identify and model a set of usual small components, 92 

such as electrical outlets, fire extinguishers, hydrant boxes and printers, on the walls 93 

of buildings using a human-robot collaboration approach. 94 

Many approaches address the issue of recognition and positioning of movable furniture 95 

objects. In this case, the objective is their detection and modelling within the interior 96 
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environment ([26], [55]–[59]). These objects, however, cannot be strictly considered part 97 

of the building and could be omitted in a 3D structural model. 98 

1.2 Contributions 99 

Figure 2 presents a graph showing the levels covered by each of the techniques referred 100 

to above, including ours. Each coloured oval represents one of the levels as defined in 101 

Figure 1. Note, in order to avoid unnecessary repetitions of the same reference, references 102 

that cover several levels in Figure 2 have been referred to in Section 1.1 just for the most 103 

significant level. Therefore, there is not a total correspondence between the works 104 

explicitly referred per level in Section 1.1. and those inside the ovals in Figure 2. 105 

It is noteworthy that most of the approaches generate models with semantic detail 106 

contributing to one or two levels only, with just two of them covering levels 1 to 4. None 107 

of the methods that detect building service components (level 5) cover all levels. In this 108 

respect, we can state that our system uniquely integrates: (1) fully automated exploration 109 

and goal-driven data acquisition and (2) fully automated semantic modelling up to level 5. 110 

 111 

 

Figure 2. Diagram showing the levels reached by the reviewed approaches and ours. 112 

Table 1 provides further details comparing the autonomous mobile mapping and 113 

modelling platforms published in the last five years that are used for digitization of 114 

buildings and are closely related to ours. The table also includes our system, MoPAD. 115 

Since MoPAD is an autonomous platform, commanded platforms are not considered in 116 

Table 1. The table reports: the publication year, the environment in which the platform 117 

works, the sensors used for digitization, the type of vehicle (V), the covered semantic 118 

models (SM1 to SM5) and the output provided by the platform. It is noteworthy that most 119 

of the systems generate models that cover the first or second semantic levels, but none of 120 

them, except ours, tackles further modelling, including the modelling of BSCs. 121 

In this paper we present an integrated system that autonomously explores and scans 122 

building interiors, and additionally produces detailed SM5 models of those environments. 123 

The algorithms that address different steps of this system have already been published 124 

([60], [61], [62], [63]). This article focuses on demonstrating the applicability of MoPAD 125 

in its entirety in real scenarios and discusses the limitations/disadvantages of the system. 126 

Section 2 is devoted to showing the navigation of the robot in a floor with multiple rooms. 127 

Section 3 summaries the different components of the system. Section 4 provides a detailed 128 
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information of the experimentation, results and evaluation on representative cases study. 129 

Finally, Section 5 and Section 6 present, respectively, the conclusions and future work. 130 

Table 1. Comparison with autonomous scanning platforms published in the last five years (V=Vehicle, 131 
GR= Ground Robot, MAV= Micro Air Vehicle, UAV= Unmanned Aerial Vehicle, LRF= Laser Range 132 

Finder, DSLR (Digital Single Lens Reflex) 133 

Platform/Ref. Year Environment Sensors V SM1 SM2 SM3 SM4 SM5 Output 

Irma 3D/[4] 2014 Corridor and several rooms 

3D laser scanner, 

thermal camera and 
RGB camera 

GR      

Point cloud and mesh 

model with thermal 
images.  

PR2/ [9] 2014 

A table top, two adjacent 

rooms and corridor with 

rooms 

2D LRF and RGB-D 
camera 

GR      3D point cloud 

-/[7] 2015 Long corridor RGB-D sensor GR      3D point cloud 

AscTec MAV 

/[11] 
2016 Indoors and outdoors Stereo camera MAV      3D voxel model 

CPS-VII/[13] 2017 Indoors and outdoors 3D laser scanner 
GRs & 
MVA  

     3D point cloud 

UAV I/[12] 2017 Indoors Rotating laser module UAV      
3D voxel model and 

raw point cloud 

GRoMI/[10] 2018 
Scans taken in corridors and 

walkways 
Two 2D LRF and 

DSLR camera 
GR      3D point cloud 

MoPAD  

(Ours) 
2019 

Indoors. Adjacent rooms and 

corridors 

3D laser scanner and 

2D LRF 
GR      Detailed 3D model 

2 Navigation of the robot in a floor with multiple rooms 134 

MoPAD is able to navigate and scan a floor with several interconnected rooms. The 135 

overall navigation algorithm has been implemented by using a Dynamic Traversal Tree 136 

(DTT), in which each room is represented by a node. Parent nodes are connected with 137 

their respective child nodes as MoPAD moves from one room to another. Since MoPAD 138 

is designed to function without any prior information of the building and its layout, the 139 

tree starts empty and is expanded as new rooms are visited. 140 

The navigation algorithm is summarised in Figure 3. The robot starts scanning the first 141 

room, which is the root node. Once the room has been scanned, the open doors of the 142 

current room are detected. The tree is then updated by adding to the current parent node 143 

the rooms corresponding to these open doors as child nodes. If there is any child node 144 

(i.e. room) that has not been visited yet, the robot goes to the unseen room passing through 145 

the nearest door and starts the scanning process again. Otherwise, the robot returns to the 146 

parent node. If that parent node is the root node and no more open door needs to be 147 

traversed, then the process ends. 148 

Figure 4 (a) shows the scenario and the path followed by the robot to visit all the rooms. 149 

Figure 4 (b) illustrates the DTT’ evolution. The robot scans room R1 and detects four 150 

open doors, which connect respectively with rooms R2, R3, R4 and R5. DTT is updated 151 

by adding the corresponding four child nodes. The robot then finds the nearest open door 152 

(d1,2) and passes through it, entering room R2. The robot scans R2 and detects only one 153 

open door (d2,6) connecting the unvisited room R6. After scanning R6, the method does 154 

not find any open door that connects an unseen room. Consequently, the robot backs to 155 

the parent node (R2). In R2 the same thing happens and the robot heads to R1. Now, from 156 

R1, the robot decides to enter and scans room R3 and the algorithm continues. This 157 

process is repeated until all rooms have been scanned. 158 

Section 3 will now review the actions and data processes that MoPAD follows to 159 

generate the aforementioned semantic models of a single room. 160 
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Figure 3. Flowchart of the MoPAD navigation algorithm. 161 
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b) 

Figure 4.a) Example of a building floor with multiple rooms and doors. The arrows indicate the path of 163 
the robot when passing through an open door. b) Evolution of the Dynamic Tree Traversal as MoPAD 164 

moves from one room to another. Forwards and backwards movements are represented by green and blue 165 
colours. 166 

3 Progressive semantic modelling: from automated acquisition of 3D data to 167 

automated generation of semantically-rich as-is building model 168 

3.1 Automatic collection of complete point clouds: SM1 169 

MoPAD is able to collect coloured point clouds of large environments. This is a 170 

sensorised mobile robot equipped with a long-range laser scanner, an RGB camera and 171 

two laser range finders for navigation. MoPAD moves autonomously from one position 172 

to another, which is calculated by a next best scan (NBS) algorithm. 173 

The majority of the current mapping approaches accumulate as much data as possible 174 

and scan everything that lies inside ([27], [9]) or outside ([6], [64]) the building, no matter 175 

the meaning of the data. However, since the MoPAD’s objective is to produce the model 176 

of a building, the NBS algorithm is based on collecting as much data as possible regarding 177 

Structural Elements (SEs), i.e. walls, ceiling, floor and columns. 178 

Before taking a new scan, the region of interest (RoI) encompassing the scene is defined 179 

as the polyhedron that contains the accumulated point cloud (scans registered up to this 180 

time). This RoI is updated each time a new scan is taken. Thus, by not hypothesizing a 181 
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RoI, our approach contrasts with earlier NBS strategies that assumed RoIs a priori 182 

(bounding boxes or convex-hulls) ([27], [9], [65]). This strategy makes the approach more 183 

versatile for arbitrary-shape scenarios. 184 

Figure 5 presents a flowchart that synthesizes the data acquisition stage. Let us assume 185 

that MoPAD has scanned a certain room A from n positions, leading to the accumulated 186 

point cloud 𝑃𝑛(𝐴). MoPAD first checks whether the scanning stopping criteria are 187 

satisfied. MoPAD stops scanning a room when at least one of thresholds 𝜀1 or 𝜀2  are 188 

overtaken, where 𝜀1 is the minimum percentage of SE that must be sensed (fixed at 189 

𝜀1=90%), and 𝜀2 is the minimum increment of SE area with respect to the last scan 190 

(𝜀2=1%).  191 

The whole algorithm can be synthesized in the following points: 192 

 If the stopping criteria are not satisfied, MoPAD moves to a new position, stops and 193 

scans. The main steps are: 194 

(1) Calculation of NBS. The NBS location is calculated as the location inside the 195 

current discretised RoI from where the likelihood of collecting new visible SE regions 196 

is maximum. A raytracing process is carried out from each accessible MoPAD’s 197 

location, within the RoI, and the next location is selected as the one providing the 198 

maximum likelihood of increase in visible SE area. The main steps of the NBS 199 

algorithm are: 200 

a. Calculate the list of hypothetic next sensor positions that satisfy the security 201 

and accessibility requirements in the current room. 202 

b. Calculate the SE membership probability of each voxel of the current 203 

discretised RoI, which is the probability of the voxel being located in a SE. 204 

c. Calculate the Certainty of each SE from each hypothetic next sensor position, 205 

which is the sum of the SE membership probabilities of the voxels of the SE. 206 

d. Calculate the Certainty of the RoI from each hypothetic next sensor position. 207 

e. Find the NBS as the position that maximizes the Certainty of the RoI. 208 

More information and details of the NBS algorithm can be found in [61]. 209 

(2) The robot moves towards the NBS location. To be able to autonomously navigate 210 

to the NBS location, the robot needs to be aware of its surroundings and locate itself 211 

within them. To do that, the robot obtains an obstacle map from the previously acquired 212 

point cloud, and matches it with the readings of a 2D laser range finder, by means of 213 

an Adaptative Monte-Carlo Localization algorithm (AMCL). 214 

Once the robot knows its position on the map, the path planning algorithm (i.e. Navfn 215 

global planner running on ROS) generates the optimal path to the desired goal. The 216 

local planner, a Time Elastic Band (TEB) approach, computes all the velocity 217 

commands which are sent to the robot. The robot can thus precisely follow the 218 

calculated path and avoid obstacles not present on the original obstacle map. See [60] 219 

for further details on the navigation module of MoPAD. 220 

(3) MoPAD takes a 360-scan and aligns the collected data, s(t), within the 221 

accumulated point cloud, S(t-1). The two main sub-processes here are: inliers/outliers 222 

detection and point cloud registration. 223 

Inliers mean data which belong to the interior of the room, whereas outliers are points 224 

captured by the laser scanner that fall outside the room. These points appear owing to 225 

open doors and windowpanes. Inliers are detected as the points that lay within the 226 
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perimeter defined by the points of the ceiling in a 2D plan view. Outliers are the points 227 

that fall outside that perimeter. 228 

The registration stage is carried out in three steps. The set s(t) is firstly horizontally 229 

aligned according to the inclinometer of the 3D laser scanner. Secondly, the 2D (plan 230 

view) registration transformation matrix between s(t) and S(t-1) is estimated using the 231 

odometry of the mobile robot. Finally, this transformation is refined by applying the 232 

well-known Iterative Closest Point (ICP) technique. The accumulated point cloud, S(t), 233 

is then calculated. 234 

(4) The RoI polyhedron is updated and its faces are classified into segments that 235 

contain or do not contain SE data. 236 

(5) Discretisation of the space and labelling. The 3D space limited by the RoI is 237 

discretised in voxels which are labelled according to their visibility (occluded/non-238 

occluded) and the SE condition (SE/non SE). Occupied voxels inside de RoI are 239 

labelled as clutter. 240 

(6) Parameters 𝜀1 and 𝜀2 are calculated and the stopping criteria are checked again. 241 

(7) If any of the stopping criteria is not verified go to (1). 242 

 If at least one stopping criterion is verified, the system processes the total point cloud 243 

collected P(A) and obtains the semantic models SM1 to SM5 of room A. (see Sections 244 

3.2 to 3.4). MoPAD then moves towards the exit door and takes two scans, one before 245 

and one after the doorframe that separates rooms A and B. Both scans are used 246 

subsequently to align the total point clouds P(A) and P(B) and therefore the respective 247 

room models. In addition, the second scan is considered to be the first point cloud of 248 

room B where the process starts again. 249 

 250 

Figure 5. Flowchart of the scanning and modelling approach. Actions for the scanning of a single room 251 
are shown in yellow. The ID according to the explanation provided is also introduced. The calculation of 252 
the semantic models are in green, and the robot actions to leave the room and start scanning a new room 253 

are in blue. 254 
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Figure 6 illustrates the main steps from the data acquisition of a single room. In each 256 

row, there is a flowchart (left), a top view of the scene with the data in different colours 257 

(centre) and a 3D view of the results (right). Colours are used to highlight data points, 258 

regions or sub-processes. 259 

The input of the algorithm is the point cloud collected with a 3D scanner. In the first 260 

row, the point clouds of the two consecutive scans at times t-1 and t painted in green and 261 

blue are registered (step (3)). The row below concerns step (4): Obtaining the RoI. Blue 262 

bars delimit the current RoI and magenta bars represent the zones that have been 263 

recognised as SE. The 3D view of the RoI with the data points superimposed in magenta 264 

is shown (only walls are shown for a better visualization; not ceilings or floors). The 265 

creation of the voxel space is in the next row (step (5)). We present a top view of the 266 

discretised space and 3D view of the voxels with different labels. Finally, the last row 267 

illustrates the next position of the scanner calculated with our NBS algorithm. The output 268 

of this process is the SM1 model of the room. 269 

 270 

Figure 6. Autonomous data acquisition of a single room. 271 
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denominated as RoI above, defines the indoor boundaries and provides by itself a still raw 275 

B-rep representation. The last polyhedron obtained from the scanning process is, therefore, 276 

our second semantic model SM2, which is composed of faces, edges and vertices. Figure 7 277 

shows an example of the evolution of this polyhedron until the scene has been completely 278 

scanned, along with the final model SM2. 279 

  (a) 

 (b) 

Figure 7. (a) Evolution of the B-rep for eight successive scanner locations (only the wall faces are 280 
shown for clarity); and (b) the final model SM2. 281 

Figure 8(a) shows a flow chart that explains how SM3 models are obtained as well as an 282 

illustrative example. SM3 models contain information concerning the main SEs of a 283 

building (wall, ceiling and floor).  284 

The extraction of the points belonging to the floor and ceiling of the room is carried out 285 

first. This is easily done by detecting two maximums in the Z-histogram of the data. We 286 

assume here that ceilings and floors are planar and horizontal regions. However, since our 287 

modelling process is applied room by room, our approach is at least able to detect ceilings 288 

of different heights in different rooms. 289 

The segmentation of the points belonging to each wall is conducted next. The point 290 

cloud is first projected onto the XY plane and is then discretised, thus generating a 2D 291 

image I. The edges of the polygon that encloses the data in I are the walls. 292 

All these data segments (walls, ceiling and floor) are fitted to planes using the MLESAC 293 

technique [66], and coherently intersected. For a room A, the SM3 model is therefore 294 

composed of planar patches, labelled semantically (wall1A, wall2A,…ceilingA, floorA), 295 

along with their topology. 296 
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The set of points delimited by SM3 is then used to extract a semantic voxelized model. 297 

This is a 3D grid of voxels where a voxel is like a small cube which does or does not 298 

contain at least one data point. In this discretised structure, the faces of SM3  become faces 299 

composed of voxels. Besides, the remaining voxels are labelled with a semantic meaning 300 

according to its visibility condition. The result of all this is a discretised semantic model 301 

DSM3 composed of labelled voxels as follows.  302 

Voxels that are part of SEs are labelled as: (1) opening, if they lie in an opening area; 303 

(2) structure, if they are visible, i.e. contain scanned points, and (3) occluded-structure, if 304 

they are not visible from any of the scanning locations. The remaining voxels are: (4) 305 

clutter, if they contain points that do not belong to any SE, (5) empty for the seen voxels 306 

that do not contain any scanned point and (6) for all the remaining unseen voxels.  307 

Figure 8(b) presents a SM3 model with 15 walls, 1 ceiling and 1 floor. The corresponding 308 

dual discretised semantic model DSM3 is shown in Figure 8(c). The reader can find 309 

complete information of this process in [61]. 310 

DSM3 is used to support the identification of the NBS location. Specifically, it is used 311 

to calculate the hypothetic visible areas, measured in voxels units, from each accessible 312 

MoPAD’s location by using a raytracing process. 313 

 314 
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(b) 

(c) 

Figure 8. (a) Process of generating the model SM3. (b) An example of model SM3 with the walls (W), 315 
floor (F) and ceiling (C) detected. (c) The dual discretised model DSM3 with all labelled voxels. 316 

3.3 Detection and Modelling of Openings: SM4 317 

Our method detects openings (doors and windows) and then calculates the opening angle 318 

λ of each door. The technique is unique in that it integrates the information regarding both 319 

the geometry (i.e. XYZ coordinates) and colour (i.e. RGB or HSV) provided by our 320 

integrated scanning system. Extended information of this method can be found in [62]. 321 

Opening detection is carried out in two stages, using both the labelled voxels for the walls 322 

obtained in DSM3 and their corresponding 4D orthoimages JCD. Each pixel of an 323 

orthoimage contains colour (RGB or HSV) and depth information (i.e. orthonormal 324 

distance from the 3D points to the wall plane). See Figure 9(a) for examples of wall 4D 325 

orthoimages. 326 

The recognition algorithm is divided into two steps: wall area detection and opening 327 

detection. 328 

1) Wall area detection. The segmentation of the visible parts of the wall (not occluded 329 

by other objects that may be hung on the wall) is conducted by finding clusters of coherent 330 

colour seeds on the wall and then carrying out a segmentation by colour. As a result of this 331 

process, the visible area of the wall is separated from the rest of the wall and the openings 332 

on it are sought in the remaining parts of the wall. 333 
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2) Opening detection. The algorithm is based on analysing the discontinuities in the 4D 334 

RGB-D space and on the knowledge of the visible area of the wall. We process the colour 335 

and depth components of JCD (i.e. JC and JD) separately and recombine the results 336 

subsequently. Assuming that door and window frames are rectangular, we detect straight 337 

lines in JC and JD. These lines represent the discontinuities as regards the colour and depth 338 

of the wall (if the door has a protruding doorframe, the discontinuity in the depth 339 

dimension should result in line detections; if the door is a different colour from that of the 340 

wall, the discontinuity in the colour dimensions should also result in line detections). Note 341 

that the lines detected may only contain parts of the contours of hypothetical doors due to 342 

potential occlusions. 343 

All possible rectangles defined by two pairs of horizontal and vertical lines are then 344 

tested, and we retain only those rectangles whose size falls within the range of typical 345 

opening sizes. This yields a highly reduced set of rectangles {𝑟}. Finally, each rectangle r 346 

is recognised as an actual opening if it fulfils a set of conditions regarding properties of 347 

colour and depth consistency, degree of door frame occlusion and location consistency 348 

within the wall. We typically classify a door leaf by means of its opening angle λ. Doors 349 

are labelled as: open, if 90º ≤ λ; semi-open, if ε ≤ λ < 90º (where ε=5 º); and closed if 0º ≤ 350 

λ < εº. 351 

Figure 9 shows the detection of three doors in a wall. In the first example, there are 352 

several objects that occlude parts of both doors. The occlusion percentage is around 38%. 353 

Additionally, the colour of the wall is not uniform owing to the lower part of the wall being 354 

tiled. The second example presents a wooden double-door with a similar colour to the wall 355 

and the third example shows the detection of a semi-open door. 356 

The recognized openings are ultimately added to SM3 to make up SM4. Some examples 357 

of integrated models are presented in Section 4 that reports experimental results. 358 
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(a) (b) 

Figure 9. Examples of opening detection. (a) 4D-Orthoimage of a wall. (b) Rectangles that enclose the 359 
detected doors. 360 

3.4 Detection and Modelling of Small Building Service Components: SM5 361 

Beside the principal architectural components included in the earlier models, other 362 

secondary but permanent components, such as building service components, located on 363 

walls and ceilings can be recognised in the coloured point clouds, and integrated to SM4, 364 

thereby obtaining SM5. 365 

The main problem to achieve this semantic level, when using the data provided by an 366 

autonomous platform, lies in the quality of the data (accuracy and density). Although the 367 

angular resolution of our laser scanner provides 10’s of millions of points per 360°-scan, 368 

few data is acquired from these objects that are often small, and as a consequence. For 369 

example, an object “electrical switch” is commonly captured as an 15x15 pixel 370 

orthoimage. In addition, the data accumulated in the orthoimage usually come from 371 

different robot positions, which blurs and distorts the final image of the object. If the 372 

scanning resolution were increased, the quality of the image would increase, but at the 373 

same time the large amount of data might collapse the system, making it slow and 374 

impractical. This is one of the issues that will be dealt with in future improvements of our 375 

system. 376 

With such poor-quality data, local feature -based recognition methods are ineffective. 377 

We conducted a set of experiments using SIFT ([67]) and SURF ([68]) algorithms using 378 

a database composed of 31 different models of BSCs. The algorithms were applied to 53 379 

orthoimages extracted from coloured point clouds of 5 scenarios. The recognition results 380 

were disappointing, with success rates below 5%.  381 

Instead of using local descriptors, we propose a global feature -based strategy that 382 

separately processes the geometry (i.e. XYZ coordinates) and colour (i.e. RGB) of each 383 

SE, with the aim of finding candidates. The results obtained in the 3D and colour domains 384 

are subsequently combined in a consensus phase. The approach is summarised below, but 385 

the reader can find complete information in [63]. 386 

Our approach assumes a database that contains the models of the objects that could be 387 

recognised and located in a building. This database includes the colour and the depth 388 

image models of each expected object. We also make the reasonable assumption that 389 

these small components lie on SEs.  390 

Each one of the SEs is characterized by a 6D orthoimage 𝐽𝐶𝐷 , where a pixel contains 391 

the position (XYZ) and the colour (RGB) of the SE points projected onto to the SE plane 392 

(in our case, points at a distance of 20 cm). After removing the existing openings (if any) 393 

in 𝐽𝐶𝐷, the new orthoimage 𝐽𝐶𝐷 is decomposed into two sub-images: a depth image 𝐽𝐷 and 394 

a colour image 𝐽𝐶 . 395 



 

 

16 

 

𝐽𝐷 is used to detect protruding objects in the depth image of the SE plane. A high-396 

frequency filter is applied to emphasize object boundaries in the image. An image 397 

matching algorithm using normalized cross-correlation is then utilised to recognise the 398 

objects in the detected protruding areas. 399 

𝐽𝐶  is used to detect objects with colour discontinuities. Areas with colour discontinuities 400 

are taken as candidates and bounded in small boxes. The candidate boxes are then 401 

classified by using a perceptron algorithm. A feature pattern composed of global colour 402 

descriptors in HSV and Lab colour spaces is used for the training of the neural network. 403 

Since the saturation and the relative colour measures, a and b, are less sensitive to image 404 

distortion and blur, the pattern is based on these colour components. The three images 405 

corresponding to components S, a and b, are reduced to three classes. The pattern is 406 

composed by twelve values: the respective values of the first and second class, and their 407 

relative areas.  408 

Although some objects might be detected by means of both geometry and colour, some 409 

others may be recognised in only one of the images 𝐽𝐶  or 𝐽𝐷. For each candidate O, a 410 

consensus algorithm is implemented by means of its Recognition Coherence Matrix 411 

𝑅(𝑂), which contains the respective Recognition Coherence Levels 𝛼 of O in the SE. 412 

Each entry 𝛼 in 𝑅 signifies an instance of the object in the scene and measures the 413 

coherence between a detection of O in 𝐽𝐷 (or none) and in 𝐽𝐶  (or none). 𝛼 ‘s value is in 414 

the range [0,1] and is calculated using the formula in Equation (1).  𝛼 assesses the overlap 415 

between two detection bounding boxes 𝐵𝐶
𝑖  and 𝐵𝐷

𝑗
 , obtained in 𝐽𝐶  and 𝐽𝐷 respectively and 416 

mormalises the overlap over 𝐵𝐶𝐷
𝑖𝑗

 , which the bounding box that encloses 𝐵𝐶
𝑖  and 𝐵𝐷

𝑗
 . In 417 

Equation (1) 〈. 〉 signifies the number of pixels. The second row of Equation (1) 418 

corresponds to the no-overlapping cases. Finally, when only one bounding box is 419 

detected, 𝛼 = 0.5. 420 

𝛼 =

{
 
 

 
 〈𝐵𝐶

𝑖 〉 ∪ 〈𝐵𝐷
𝑗〉

〈𝐵𝐶𝐷
𝑖𝑗 〉

𝑖𝑓 𝐵𝐶
𝑖 ∩ 𝐵𝐷

𝑗
≠ ∅

0 𝑖𝑓 𝐵𝐶
𝑖 ∩ 𝐵𝐷

𝑗
= ∅

0.5 𝑖𝑓 ∄𝐵𝐶
𝑖 𝑜𝑟∄𝐵𝐷

𝑗

     (1) 421 

The Recognition Coherence Matrix 𝑅(𝑂) is used to identify several instances of the 422 

object O inside an SE. To do this, the highest value in 𝑅(𝑂), i.e. highest Recognition 423 

Coherence Level, is selected and is considered to correspond to a recognised instance of 424 

O, and the corresponding row and column of 𝑅 are then removed. This process is iterated 425 

until R is null or until the number of selected cells is equal to the expected number of 426 

instances of O in the SE. 427 

Figure 10 illustrates this process with an example in which several instances of the 428 

same object are or are not detected in both 𝐽𝐷 and 𝐽𝐶 . The first row in Figure 10 shows 429 

the instances recognized in 𝐽𝐷 and 𝐽𝐶. In some cases, the respective recognition algorithms 430 

yield more than one instance per object. Thus, the object type 1 has four and three 431 

instances in 𝐽𝐶  and 𝐽𝐷 respectively, and the object type 2 has two instances in both 432 

orthoimages. One instance of the object type 3 is found in 𝐽𝐷, and one instance of the 433 

object 4 are recognized in 𝐽𝐶 . The figure then shows the four Recognition Coherence 434 

Matrices and the Recognition Coherence Levels obtained for each instance after 435 

consensus. Figure 11 illustrates some details of the detection of BSCs in walls. 436 
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Finally, the instances of a recognized object are added to the earlier model SM4, thus 437 

generating the last semantic model SM5. Further examples of recognition of BSCs are 438 

presented in the next section. 439 

 440 

Figure 10. Example of recognition of multiple instances of an object on a wall. 441 

 

 

Figure 11. Representative real scenes with the output of the opening and BSCs detection approaches. 442 
The positions of the detected doors and the BScs are highlighted in different colours. 443 
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4 Experimental Results 444 

4.1 MoPAD 445 

Experimentation on real environments has been carried out with our mobile platform in 446 

representative cases study. The coloured point clouds are collected with a Riegl VZ400 447 

laser scanner and a RGB-DSLR (Digital Single Lens Reflex) camera on board MoPAD 448 

(Figure 12 (a)). The camera and scanner are mounted on a motorized pan-tilt unit that 449 

enables the system to acquire full 360° x 180° acquisitions . We note that a thermal camera 450 

has also been added to obtain 3D thermal scans, but this additional data is not considered 451 

in the work reported here. The platform carries two 2D laser range finders (LRF1 and 452 

LRF2). LRF1 is placed close to the VZ400 and its captured data must be aligned to the 453 

obstacle map (OM), which has previously been obtained from a slice of the point cloud. 454 

Both sets of points must match for successful robot positioning. LRF2 is placed at the base 455 

of the robot and localizes the robot while it navigates from one scanning position to the 456 

next. Two computers command the Riegl VZ400. The whole robot system calculates the 457 

NBS and undertake all 3D processing stages onboard. 458 

(a) 

 

 

(b) (c) 

Figure 12. (a) Mobile Platform for Autonomous Digitization (MoPAD). (b) Obstacle map calculated 459 
from the point cloud below the scanner. (c) Positioning and tracking of the robot. In black is a slice of 460 

points at the height of LRF1 and in different colours are the data obtained from LRF1.  461 
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4.2 Experimentation on a real environment 462 

A part of the basement of the Industrial Engineering School building at Castilla La 463 

Mancha University (Spain) was chosen as a good example to test our system on real 464 

environments. Figure 13 shows several photos of the scenario tested. The scenario, of 465 

19.5 m x 44 m in size, is composed of 4 rooms with 32 walls, 4 ceilings, 4 floors, 26 466 

columns, 32 doors and 49 small objects. The ground truth 3D model for evaluation of 467 

accuracy and errors was produced manually by using a terrestrial laser scanner with 468 

manual acquisition and registration processes. 469 

 470 

Figure 13. Photos of different rooms of the scenario tested. 471 

 Level 1. Following our scan planning algorithm, the floor was scanned from 14 472 

different locations producing a total of 46 million points corresponding to SEs (SM1 473 

model). The average processing times were: 27.7 sec for registration, 29.2 sec for point 474 

cloud pre-processing (inliers/outliers and segmentation of floor and ceiling), 28.1 sec 475 

for the calculation of the RoI and 127.8 sec for segmentation, labelling and NBS 476 

algorithm. Figure 14 (a) shows shots of the MoPAD at the scanning positions and the 477 

current obstacle maps. The scan positions and the corresponding aligned point clouds 478 

are shown underneath. A video showing the whole process is available as 479 

supplementary material. 480 

 Levels 2 and 3. After finishing the data acquisition stage, the simplified 3D model is a 481 

polyhedron with 38 patches, 90 edges and 60 vertices organised in a relational graph 482 

structure (SM2). In level 3, the patches are labelled as walls, ceilings, floors or columns, 483 

thus extending the semantic content of the 3D model (SM3). We found 38 SEs (30 484 

walls, 4 floors and 4 ceilings) and 25 columns. The recognition rates (true positive 485 

cases) were: SEs 95% and columns 96%. The occlusion percentage was 9.4 %. Figure 486 

14(b) left illustrates the model SM3. 487 

The accuracy of the SEs detected in SM3 was obtained by comparing our simplified 488 

3D model with the ground truth model. This comparison was made by measuring the 489 

difference between the length of the vertical and horizontal edges in our model and 490 

those in the ground truth model (denoted as 𝑑𝑣 and 𝑑ℎ). An orientation error angle Φ 491 

was also calculated for each patch of the model. Figure 15(a) illustrates these 492 

dimensions. The average values for the differences between the vertical and the 493 

horizontal edges were 𝑑𝑣 = 2.8 cm and 𝑑ℎ = 2.3 cm, with maximum values of 494 

𝑑𝑣_𝑚𝑎𝑥 = 4.5 cm and 𝑑ℎ_𝑚𝑎𝑥 = 11 cm. The average and maximum values of the 495 

orientation error were Φ = 0.17º and Φ𝑚𝑎𝑥 = 1.55º, respectively. 496 

 Level 4. The method detected 28 doors (3 open and 25 closed doors) and the 497 

recognition rates (true positive cases) for doors was 87.5%. The right of Figure 14(b) 498 

shows the model SM4. 499 
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 500 

 

a) 

 

b) 

Figure 14. (a) up) The MoPAD platform scanning the indoor environment. MoPAD navigates from 501 
one position to another using the obstacle map and the navigation stack module. Down) Scanning 502 
positions and top view of SM1. Aligned point clouds in different colours are shown. (b) Details of 503 

model SM3 (walls, ceiling, floor and columns) and SM4 (openings). 504 

Precision and Recall metrics were used to evaluate the pose and size of the recognised 505 

openings. We computed the overlap between the areas of the ground truth and the 506 

recognised opening, and evaluated the true-positive (tp) , false-positive (fp) and false 507 

negative (fn) detected areas as illustrated in Figure 15(b). The average values were 508 

Precision=0.98 and Recall=0.94. The absolute and relative errors, 𝑒𝑎𝑏𝑠 and 𝑒𝑟, were 509 

also calculated as shown  in equations (2) and (3). Their average values were found to 510 

be 𝑒𝑎𝑏𝑠 = 0.31 m2 and 𝑒𝑟 = 0.08, respectively. 511 

 512 

𝑒𝑎𝑏𝑠 = 𝑓𝑝 + 𝑓𝑛 (2) 

  

𝑒𝑟 =
𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑛
 (3) 

 513 

MoPAD navigation
in the obstacle map

MoPAD
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 Level 5. A contribution of our work compared to others is the inclusion of BSCs into 514 

the semantic 3D model of the building. In this study case, 49 different objects were 515 

grouped into seven classes: Socket/Switch, Fire-Alarm Switch, Fire Sign, Exit Sign, 516 

Electric Sign, Exit Light, Door Sign. A total of 43 out of 49 objects were successfully 517 

detected on the walls of the scene. 518 

Table 2 shows the percentages of true positive, false positive and false negative for 519 

each class. The worst percentage corresponds to sockets and switches owing to the 520 

smaller size and lack of texture of these objects. Indeed, the selected scanner resolution 521 

led to SE orthoimages generated with a resolution of 1cm/pixel, and therefore the size 522 

of orthoimages of switches was typically 15 x 15 pixels.  523 

We measured the localisation accuracy by calculating the horizontal and vertical errors 524 

between the centres of the recognised and the ground truth objects on the wall plane 525 

(Figure 15 (c)). The mean horizontal and vertical errors were 1.3 cm and 2.6 cm, 526 

respectively.  527 

Figure 16 presents details of the detection of BSCs and the SM5 model. A 3D flythrough 528 

video of this model is also available at the supplementary material. 529 

 530 

Table 2. Detection of BSC. Recognition results. (N=number of objects, TP=true positive, FP=false 531 
positive, FN=false negative)  532 

 Class N 
TP 

(%) 

FP 

(%) 

FN 

(%) 

TP with 

α=0.5 

TP with 

α>0.9 

#1 Socket/Switch 14 28.6 57.1 14.3 100 0 

#2 Fire-Alarm Switch 2 100 0 0 0 100 

#3 Fire Sign 7 85.7 14.3 14.3 100 0 

#4 Exit Sign 6 66.7 33.3 0 100 0 

#5 Electric Sign 2 50.0 50.0 0 100 0 

#6 Emergency Light 7 71.4 28.6 0 20 80 

#7 Door Sign 11 63.6 9.1 27.3 71 28 

 533 

 

(a) 
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(b) 

 

(c) 

Figure 15.  (a) Illustration of accuracy measurements of the SEs detected: dv, dh and . (b) Definition of 534 
tp, fp and fn areas in the opening detection approach. (c) Positioning errors of BSCs. 535 
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(e) 

Figure 16. a) Blurred orthoimages of several BSCs. (b) Examples of BSCs recognised and classified in 536 
SEs. (c) SM5 of room #1. (d) and (e) The SM5 model. Red spots represent the objects detected. 537 

 538 

4.3 Experimentation on a simulated environment 539 

We have analysed the results obtained in a simulated case study consisting of the first 540 

floor of a typical office building. The advantage of simulated data is that the ground truth 541 

model regarding and the location of each object at each semantic level is exact. 542 

The simulation of our automated scanning platform was carried out with Blensor [69]. 543 

Blensor can simulate the acquisition of coloured 3D data obtained from different LIDAR 544 

devices. In our case, the simulated Riegl VZ-400 laser scanner obtains data that are 545 

automatically aligned in a universal reference system. Blensor also makes it possible to 546 

inject noise into the data, signifying that our method can be tested in realistic simulation 547 

conditions.  548 

The simulated scenario is depicted in Figure 17. The scene is a building floor of 22.9 m 549 

x 19.4 m in size, composed of 5 rooms, with 24 walls, 8 doors, 10 windows and 116 BSCs. 550 

Figure 18. shows the final result obtained after passing through all semantic levels. 551 

Discussions of the results obtained for each level are provided in the following paragraphs. 552 

 553 

Figure 17. The case study. The building plan and details of some BSCs. 554 



 

 

24 

 

 Level 1. The complete scenario required 30 scans, with a total of 313 million points. 555 

The total point cloud was segmented into three data types:  inliers, outliers and clutter 556 

(SM1). Inliers are data which belong to SEs of the scene. Outliers are points collected 557 

from outside the room (owing to the fact that the laser scanner beam passes through 558 

open windows and doors) or incorrect data originating from shiny and reflective 559 

surfaces. 560 

 Levels 2 and 3. The simplified 3D model is a polyhedron with 34 patches, 72 edges 561 

and 48 vertices organised in a relational graph structure (SM2). In level 3, the faces are 562 

labelled as walls, ceilings, floors or columns, thus extending the semantic content of 563 

the 3D model (SM3). We found 24 walls, 5 floors and 5 ceilings. There were no false 564 

negative or false positive cases. 565 

The accuracy of the SEs detected was: 𝑑𝑣 = 3.1 cm, 𝑑ℎ = 4.8 cm, 𝑑𝑣_𝑚𝑎𝑥 = 3.1 cm 566 

and 𝑑ℎ_𝑚𝑎𝑥 = 15.0 cm. The average and maximum values of the orientation error 567 

were Φ = 0.03º and Φ𝑚𝑎𝑥 = 0.41º, respectively.  568 

 Level 4. Our method was able to detect all the existing openings: a total of 13 doors 569 

and 10 windows. The opening state of the doors  was also successfully calculated, with 570 

0 open-doors, 9 closed-doors and 4 semi-open doors correctly labelled. 571 

The evaluation using the Precision and Recall metric was: Precision=0.99, 572 

Recall=0.92, 𝑓𝑛_𝑚𝑎𝑥 = 0.49 𝑚2 and 𝑓𝑝_𝑚𝑎𝑥 = 0.02 𝑚2, respectively. The average 573 

values of the absolute and relative errors were 𝑒𝑎𝑏𝑠 = 0.15 𝑚2 and 𝑒𝑟 = 0.08, 574 

respectively. 575 

 Level 5. A database was created with some of the most frequent objects found on the 576 

walls of a standard building. The scenario had 116 small BSCs, and our approach 577 

detected 101 true objects (87.1%), 6 false objects (5.1%) and was not able to recognise 578 

15 objects (12.9%). Horizontal and vertical location errors were 2.4 mm and 2.3 mm, 579 

respectively. Table 3 shows more details of TP, FN and FP per object class. The last 580 

two columns contain those percentages of TP in which the average Recognition 581 

Coherence Level α is higher than 0.9 and equal to 0.5 respectively. 582 

Low values correspond to objects that are mainly recognised by either colour or by 583 

geometry (e.g. built-in socket, extinguisher sign), whereas high values are those that 584 

are identified in both orthoimages 𝐽𝐷 and 𝐽𝐶  (e.g. socket x2, switch). 585 

Figure 18 shows the five semantic 3D models obtained and the SM5 with some details. 586 

 587 

Table 3. Recognition results for building service components in simulated data. 588 

Object 

 

N 

 

TP 

(%) 

FN 

(%) 

FP 

(%) 

TP with 

α>0.9 

TP with 

α=0.5 

Electrical Panel 4 75.0 25.0 0 33.3 66.7 

Socket x1 20 100 0 0 30.0 70 

Socket x2 6 100 0 0 100 0 

Socket x4 11 81.8 18.1 9.1 77.8 22.2 

Built-in Socket  6 50.0 50.0 0 0 100 

Switch 16 87.5 12.5 12.5 78.5 21.5 
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Fire Extinguisher 9 88.8 11.1 0 37.5 62.5 

Radiator 6 83.3 16.6 0 20.0 80 

Fire Alarm Switch 8 87.5 12.5 12.5 42.9 57.1 

Smoke Detector 10 90.0 10.0 0 66.7 33.3 

Exit Light 3 100 0 0 66.7 33.3 

Extinguisher Sign 9 77.7 22.2 22.2 0 100 

Fire Alarm Switch Sign 8 87.5 12.5 0 0 100 

 589 

 590 
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(b) 

Figure 18. (a) The five semantic 3D models obtained. In level 5, the centroids of the BSCs detected are 591 
plotted in red, and the openings are removed for clarity. (b) The SM5 model. Details with the location and 592 

images of some of the small components detected. 593 
 594 

4.4 Discussion 595 

This section discusses the performance of MoPAD in the real and simulated 596 

environments. 597 

Differences in Level 1 are in the density/quality of the data and the final point cloud. 598 

In simulation, the building indoor model is composed of perfect flat SEs with 599 

homogeneous colours. However, in reality, the SEs are not perfect flat surfaces and there 600 

exist slight variations in the colour, which depend on several factors (illumination of the 601 

scene, shadows, etc). 602 

Although a small amount of noise is programmed in the simulated data acquisition 603 

process, more accurate and dense point clouds are obtained (resolution of 4 pixel/cm2) 604 

than in the real case (resolution of 1 pixel/cm2). Besides, the simulation software 605 

automatically performs precise registration between different scans. In the real case, as 606 

mentioned in Section 3.1, the data are registered using the robot’s odometry and the ICP 607 

algorithm. It can be stated that, in general, the input data in simulation are more precise 608 

in geometry and colour than the real input data. This is important to highlight because 609 

this affects the results for the other levels, particularly level 5. 610 

For levels 2 and 3, the system provides very good results in both cases. Regarding the 611 

detection of SEs, the real case achieves percentages higher than 95% while no errors are 612 

recorded in simulation. The errors 𝑑𝑣 and 𝑑ℎ are, in both cases, below 5 cm, which is a  613 

reasonable result, although more accurate modelling may be required depending on the 614 

application. Finally, errors in Φ are below 1º, which also demonstrates that the system 615 

works successfully in both environments. 616 



 

 

27 

 

For level 4, the results in simulation were excellent, with all existing openings 617 

successfully detected. In the case of the real data, although the recognition rate (true 618 

positive cases) was high (near 90%), the algorithm failed in some cases. The main causes 619 

of these failures are the presence of occluded zones around doors or from slight colour 620 

variation between door and wall. Figure 19 shows two examples in which the detection 621 

of doors fails. In the first case (Figure 19 (a)), the SE detection algorithm fails, because a 622 

structural element is incorrectly split into several smaller structural elements. In the 623 

second case (Figure 19 (b)), the wall and door have similar colours, which led to a small 624 

region of the door being labelled as wall area, causing the failure. 625 

 
a) 

 
b) 

Figure 19. Examples of doors not detected in level 4. 626 

For level 5, the results are different in both environments. Although the percentages in 627 

the detection of objects on the walls were quite similar in both cases, in the real case the 628 

classification algorithm failed more than in the simulated case. The true positive 629 

percentages per object were lower and the false positive percentages were higher. As 630 

already discussed in Section 3.4, the main reason of this is the lower quality of the 631 

orthoimages in the real case, in which small objects appear as blurred small orthoimage 632 

patches. On the contrary, the simulated point clouds provides higher quality orthoimages 633 

which yields better recognition results. 634 

5 Conclusions 635 

Many of the current automatically-generated 3D models representing large 636 

environments describe the scene only at a geometric level, lacking semantic detail. In the 637 

field of building modelling, representations are typically simplified B-rep models in which 638 

the principal information concerns walls, ceiling, floor and openings. In this paper, we 639 

present a method to automate the creation of high-level semantic models of buildings using 640 

autonomous (non-commanded) mobile robots. After reviewing the state of the art in this 641 
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area, it can be said that, to date, none of the comparable autonomous systems achieves this 642 

level of semantic  detail. 643 

Our MoPAD platform autonomously digitises building interiors by scanning from 644 

locations that are calculated by an original NBS algorithm. The system processes the 645 

collected data with the objective of finding essential parts of the architecture as well as 646 

significant secondary components (i.e. BSCs) lying on walls and ceilings. When the scan 647 

stopping criteria are verified, MoPAD creates a SM5 model of the current room, identifies 648 

the exit door, enters the adjacent room and starts again the scanning process. The whole 649 

system has been tested under real conditions yielding promising results. The accuracy of 650 

3D models generated from the proposed technique has been evaluated encouragingly 651 

against ground truth models in real and simulated environments. 652 

6 Future Work 653 

Despite the progress made to date, many challenges remain to be addressed. Our method 654 

still has several environmental restrictions and limitations at each semantic level. At level 655 

1, the NBS algorithm should take into account the quality and density of the data in the 656 

SEs. This would improve the quality of orthoimage 𝐽𝐶𝐷 and therefore the object 657 

recognition results. The metric used to select the NBS location and overall point cloud 658 

quality could also be extended to include quality of data for BSCs (as opposed to SEs only, 659 

right now). 660 

At levels 2 and 3, one primary aspect to be improved concerns the detection of non-661 

planar structural elements, such as curve walls and irregular ceilings/floors with different 662 

heights, within the same room. At level 4, solutions for non-rectangular doors and more 663 

complex cases, including severe occlusion, must be addressed. With regard to level 5, new 664 

recognition algorithms, including deep learning techniques, should certainly be considered 665 

to achieve higher detection performances. Our efforts will also be focused towards dealing 666 

with a wider range of BSCs. 667 

In order to increase the degree of autonomy of our mobile platform, the current research 668 

is also focussed on how our MoPAD passes from one room to another when the door is 669 

closed or semi-closed. Our opening recognition algorithm can detect the state of a door 670 

but, so far, the mobile robot can enter the adjacent room only when the door is open. In 671 

the case when the door is closed, the MoPAD should interact with the door handle and 672 

push/pull the door until the door is completely open. This entails supplying a manipulator 673 

to MoPAD and programming a precise manipulator-door interaction. This is a robotic 674 

issue that we are currently working on. 675 

To date, our system has been tested on a building story composed of a few rooms. We 676 

are encouraged to test our system in more extended and difficult environments. 677 

Particularly, we are planning to automatically extract as-is SM5 models of multi-story 678 

buildings. The big problem here is that MoPAD should recognize the lift doors, enter the 679 

lift and leave, all in a safely manner. Such degree of autonomy requires many other 680 

complex actions to be dealt with in the future. 681 
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