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This paper presents a novel Augmented Reality (AR) system that enables improved visualization of semantically-
enriched AEC three-dimensional information for application in design, construction and management of built assets. The 
system uses a single standard digital camera, and it does not rely on any markers inserted in the scene or any beacon-
based positioning and inertial technologies. The system is solely image-based and consists of two stages. First, in an 
offline stage, a 3D map of the scene is automatically constructed from a set of digital images, employing structure-from-
motion (sfm) and Speeded Up Robust Features (SURFs); the resulting map thus consists of a set of 3D-referenced 
SURF features. This is followed by a Poisson dense mesh reconstruction procedure. The augmenting information (e.g. 
3D model of building asset) is subsequently registered with this map. During online operations, the positions of target 
digital images (from a video stream or a head-mounted camera) are automatically calculated, using a robust SURF fea-
ture matching procedure that is optimized for three different situations (initialization, tracking and resetting) all implement-
ing octrees for efficient 3D pruning, and kd-trees for efficient feature matching. Once each input image is positioned 
within the map, its view is augmented taking into account static occlusions of the scene on the augmenting information.  
Several experiments validate the proposed system and demonstrate its overall performance: a near real-time processing 
speed, very accurate and stable positioning. The limitations of the current system are also discussed including: the cur-
rently limited processing speed, and the need for adequately textured scenes. 
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INTRODUCTION 

 

Visualization in Construction 

Construction projects are complex endeavors requir-

ing the collaborative work of numerous different 

stakeholders, and generating large amounts of data 

and information from which complex decisions are 

made. Thanks to exponentially increasing computa-

tional capabilities, Building Information Modeling 

(BIM) is now being intensively developed with the 

aim of more efficiently and effectively managing life-

cycle construction information. Rooted from 3D 

modeling and visualizations, BIM engines offer en-

hanced visualization and management of construc-

tion information. Virtual Reality (VR) immersive envi-

ronments are further proposed in order to enhance 

user experience in navigating the created virtual 

worlds
1
. Numerous works have been published with 

regards to the development of VR environments
2,3,4

. 

Despite the great advances already made in devel-

oping and promoting VR in the Architectural, Engi-

neering and Construction (AEC) industry, VR pre-

sents a couple of inherent limitations: 

1. Virtuality: most developed VR technologies for the 

AEC industry focus on providing means to explore 

digital information in entirely digital worlds. As a re-

sult, VR is most useful during pre-project and design 

phases of construction projects, but is not fully 

adapted for construction and operation stages, 

where the virtual information may need to be more 

closely linked and visualized with the real world. It is 

noted though that some technologies are being de-

veloped to capture the state of actual construction 

projects and integrate it within the project Building 

Information Model
5,6

; but in these systems the visual-

ization remains entirely within a virtual world. 

2. Single-user: Many VR environments, i.e. VR Im-

mersive rooms, focus on single user experience 

(only one “view” of the model can be seen at a time), 

preventing multiple users to simultaneously have 

their own views of the information. Nonetheless, we 

note that some more complex systems are being 

developed that enable multiple views simulatenous-

ly
7
. 

 

Augmented Reality 

On the other end of the virtual continuum is Aug-

mented Reality (AR). AR aims at fusing virtual and 

actual information, e.g. by projecting virtual infor-

mation on head-mounted displays (HMDs) that sim-

ultaneously enable the visualization of the real envi-

ronment around. As a result, AR inherently has the 

potential to overcome the two main limitations identi-

fied above. 



AR has already been investigated for application 

within the AEC industry with systems such as 

ARVISCOPE
8
 and AR4BC

9
. These systems demon-

strate the great potential identified above, but they 

also exemplify the challenges faced in developing 

such systems: 

1. Positioning: In order to ensure a realistic and ac-

curate overlaying of the virtual information on the 

viewed real world, the positions with regard to the 

real world of both the virtual information and the 

person (e.g. HMDs) must be known very accurately. 

In AR, small errors in those estimations rapidly result 

in obvious errors in the overlay. Regarding the AR 

systems reviewed above, it appears that, although 

systems based on positioning technologies like GPS 

and inertial sensors have the advantage not to re-

quire any prior knowledge of the scenes, they are 

fairly unstable due to the sensors inaccuracies. 

2. Occlusions: Unless 3D information about the ac-

tual real world is available, occlusions of virtual ob-

jects by real-world objects are often not taken into 

account, resulting in obvious artifacts (ARVISCOPE
8 

suggests the use of range camera to compute such 

occlusions in real-time, but these cameras only work 

for ranges lower than 10m). 

 

This paper presents a novel AR system that is based 

on different technologies as those traditionally inves-

tigated. The main particularity of the system is that it 

does not rely on any beacon-based localization (e.g. 

GPS) or inertial navigation systems (although they 

could all be used complementarily). The system is 

solely image-based.  This is achieved at the cost of a 

prior visit of the site of interest where numerous 

digital pictures must be acquired. The images are 

used by the positioning algorithm, but have the sec-

ondary advantage that they can be used to recon-

struct a 3D model of the site, that can be used to 

compute static occlusions of the site on the aug-

menting information, an advantage over previous 

approaches.  

 

SYSTEM OVERVIEW 

The system is composed of two stages. In an off-line 

mapping stage, the actual 3D scene is first learnt 

and then augmented with virtual elements. Subse-

quently during on-line operations, for each image of 

the input stream (target images), the camera pose is 

first estimated, and the image is then augmented 

with appropriately occluded virtual scene objects. 

These two stages are detailed in the following two 

sections. Then, validation experiments are presented 

that demonstrate the performance of the system. 

 

OFF-LINE MAPPING 

The offline mapping process is composed of two 

sub-stages detailed below: (1) learning the scene; 

(2) augmenting the scene. 

 

Learning the scene 

The input to the learning stage includes a set of 

images of the scene of interest, called training imag-

es, with corresponding camera intrinsic parameters. 

The mapping process, summarized in Fig.1, is fully 

automated and goes as follows. First, Speeded Up 

Robust Features (SURF)
10

 are extracted from all 

training images. These SURF features are used in a 

Structure-from-Motion (SfM) framework to recover 

the scene 3D structure. SURF features are used in 

an initial sparse matching step to select candidate 

image triplets for projective reconstruction. The ro-

bustness of SURF features to scale changes allows 

some constraints about camera motion to be relaxed 

(normally constrained to turn around the building to 

be reconstructed), permitting camera paths at differ-

ent distances from the building. A subsequent robust 

Euclidean Bundle Adjustment from candidate views 

directly registers the 2D SURF descriptors in the 

reconstructed Euclidean 3D reference frame to build 

the map of 3D-referenced features. This approach 

effectively populates the map with 3D-referenced 

SURF features. We use the ARC3D framework
11

 for 

3D scene mapping and self-calibration. 

 

Fig.1. Off-line mapping process. 

 

 

Augmenting the scene 

ARC3D actually provides us with an additional fea-

ture that is of particular interest to our system. In 

addition to learning a 3D map of SURF features, 

ARC3D enables a dense reconstruction of the ac-

quired scene, in the form of a 3D (textured) mesh, 

using the same input images (we use Poisson mesh 

reconstruction for this). Compared to the point cloud 

of the reconstructed map, this mesh presents two 

advantages: 

1. It simplifies the manual insertion of virtual 

objects in the scene (discussed below). 

2. During online processing, it enables the 

computation of occlusions by the scene of 



the virtual objects and vice versa. 

Given the dense 3D mesh of the scene, the user can 

easily insert virtual (augmenting) 3D objects within 

the scene. Note that, in the case when a virtual ob-

ject is planned to replace an existing one (e.g. a 

building is planned to be demolished and replaced 

by a new one), the user just has to remove from the 

reconstructed mesh the parts corresponding to the 

objects to be replaced. This ensures that occlusions 

caused by the objects to be replaced are not taken 

into account when augmenting the target images 

with the new objects. Fig. 4 in section Validation 

Experiments shows an example of a reconstructed 

scene augmented with a virtual building. 

 

ON-LINE IMAGE STREAM PROCESSING 

Image Positioning 

During on-line operations, the system processes the 

target image sequence (e.g. from a video stream). 

For each target image, SURF features are extracted 

and the Starget (=1500) strongest ones are matched 

with the SURF descriptors in the database (using the 

Euclidean distance in a 64-dimensional space). 

Matched feature descriptors permit to establish cor-

respondences, called matched 3D points, between 

the 2D image coordinates of the target image fea-

tures and the 3D coordinates associated to the 

matched map features. Knowing the target camera 

intrinsic parameters, the camera pose is then esti-

mated from these correspondences by wrapping the 

3-point algorithm
12

 in a Random Sampling And Con-

sensus (RANSAC) framework
13

 – i.e. triplets of fea-

ture matches are iteratively tested in 3D to find the 

one that leads to the most matches being geometri-

cally correct. The resulting initial pose estimation is 

subsequently used in a Guided Refinement process, 

in which the database 3D points culled using the 

frustum from the initial pose estimate are reprojected 

on the image plane of the target image, and matches 

to the target image SURF features are identified only 

within a radius of ρ2D pixels (in our implementation, 

5≤ρ2D≤15 pixels). This process enables to reassess 

all initial matches and identify additional ones. Final-

ly, a refined pose estimation is obtained by putting all 

matches into a Levenberg-Marquardt non-linear 

pose optimization algorithm
14

. 

 

Image Positioning Optimization 

While the method above can enable robust pose 

estimations, it would require a brute force matching 

of the target image features with all features in the 

learnt scene map. In other words, its complexity is 

proportional to the size of the scene map, i.e. data-

base of 3D-referenced SURF descriptors, which 

would prevent real-time applications. To avoid laten-

cy in the system, we implement different techniques 

to expedite matching without jeopardizing the quality 

of the pose estimates. These are presented in the 

following subsections. 

 

K-d tree of scene database features 

We use the common strategy consisting of partition-

ing the SURF descriptor space into a k-d tree
15

, so 

that, when matching each target image feature de-

scriptor, only the subspace associated with the tar-

get descriptor is visited. This effectively reduces the 

computational payload. 

 

Filtering scene database features by strength 

SURF features can be given a value of reliability, or 

strength, which is associated to the Hessian re-

sponse
10

. Strength depends on the scene feature, 

the viewpoint and the lighting condition of the image, 

thus capturing the repeatability of the feature.  

However, this repeatability measure is specific to the 

image from which each feature is extracted, while 

each scene database 3D points is calculated from 

the matching of features extracted from different 

images. In order to obtain a global SURF strength, 

we thus propose to assign to each 3D reconstructed 

point the average of the strengths of the SURF fea-

tures corresponding to that point in the different input 

images. This way, SURF descriptors can be globally 

sorted and only those with a high average repeata-

bility can be retained. Of course, more sophisticated 

weighting algorithms of the different strengths could 

be implemented. 

 

Multiple Matching 

Due to the repetitions and self-similarities often ob-

served in urban architecture, there is a high likeli-

hood that any target image feature be matched with 

high confidence with several database features. 

Enabling matching with the best matched feature 

only would create the risk of wrong matches and 

consequently wrong pose estimations (mathemati-

cally right, but actually wrong). It is thus proposed to 

enable one-to-many matches between each target 

image feature and the database features. Correct 

poses are then identified through the RANSAC-

based pose estimation framework. 

 

Additional heuristics are proposed to increase 

matching performance depending on the three con-

figurations, or modes, that can be encountered dur-

ing the processing of the stream of target images: (1) 

Pose initialization; (2) Pose tracking; and (3) Pose 

resetting. These three modes are further described 

below. Fig. 2 summarizes the strategy used during 

on-line processing to position each target image 

within the learnt 3D map. 

 



Pose initialization 

Pose initialization is the mode when no prior 

knowledge about the pose of the camera is availa-

ble, e.g. at the beginning of the processing of the 

image stream, or when tracking has failed for n con-

secutive images (we use n=20).  

In this situation, matching must be made considering 

a set of database features well spread within the 

entire scene. To achieve this, we arrange the 3D-

referenced feature points into an octree, where each 

node represents a partition (cuboid) of the 3D scene. 

The octree is populated with all scene 3D points, 

splitting each node once the number of points it con-

tains reaches a threshold N’max.  

While the full octree is used in the other two modes 

described below, during pose initialization, a pruned 

octree is used to speed up matching. The pruned 

octree is constructed by removing all octree cells 

with a volume smaller Vmin. The points within those 

cells are combined in the parent cell (with volume 

larger than Vmin) and only the Nmax points with the 

largest global SURF strengths are retained. The 

resulting pruned octree contains much fewer points 

that the entire one, but these cover the entire scene 

as homogeneously as possible. In our implementa-

tion, we use Nmax = 200 and N’max = 400 and Vmin = 

5m
3
. Note that the pruned octree is only computed 

once offline. 

 

Pose tracking 

In this mode, some knowledge about previous cam-

era poses is available. Assuming linear camera dy-

namics, a prediction of the pose of the current cam-

era is made using an Extended Kalman Filter 

(EKF)
16

. The frustum of the predicted camera pose is 

then used to cull the full octree (near and far culling 

planes are used with distances set to 0m and 50m 

respectively). Furthermore, only the Sfrustum strongest 

features of the points located in the predicted view 

are considered for matching and are organized in a 

k-d tree. In the experiments presented below, we use 

Sfrustum=Starget.  

To prevent the system from considering unreasona-

ble pose predictions, we reject any prediction with a 

change in camera orientation larger than 

δαmax=0.1rad (≈5deg), in which case the camera 

pose is computed in Reset mode (see below).  

 

Pose resetting 

In this mode, tracking has failed for the given image, 

but was successful for at least one of the last n tar-

get images (see Initialization mode). Given the loca-

tion of the last successfully calculated pose, we then 

cull the full octree using a sphere centered at that 

location and with a radius of ρsphere=50m. Additional-

ly, like in Tracking mode, only the Ssphere points with 

the strongest global SURF strengths are kept for 

matching and are organized in a k-d tree. In the 

experiments presented below, we use 

Ssphere=4Sfrustum. 

 

 
 Fig.2. On-line image positioning process, emphasizing the strategies chosen to reduce the search space for efficient 
feature matching. 



Augmenting Stage 

Once the system has confidently calculated the pose 

of the camera corresponding to a target image, this 

image is augmented. In order for this augmentation 

to take occlusions from the reconstructed 3D scene 

into account, the simple procedure shown in Fig. 3 is 

used, that simply aims to reproject on the target 

images the parts of the augmenting object(s) that are 

not occluded by the reconstructed 3D scene mesh. 

 

VALIDATION EXPERIMENTS 

The proposed AR system has been tested using 

several different urban scenes, with different levels 

of complexity with regard to the amount of texture, 

as well as the repetition of textures (which can con-

fuse the system). Two experiments are presented 

here. The first is detailed, and aims to highlight the 

overall performance of the system. The second ex-

periment demonstrates the performance of the sys-

tem in a very different context. The attached video 

illustrates (1) the detailed stages and results 

achieved in the first experiment, and (2) the results 

achieved in the second experiment. 

 

Experiment 1: Housing Estate in Edinburgh 

This experiment was conducted in a modern housing 

estate composed of apartment buildings and located 

in Edinburgh, Scotland. 22 training images of a part 

of the estate were taken by a person walking around 

it. The pictures have a 2048x1536 resolution, i.e. 

~3M pixels (see attached video). The processing of 

the images results in two files, containing the list of 

3D-referenced SURF features and a 3D mesh of the 

scene, which is then augmented with an additional 

building (see Fig. 4). A set of target images was 

acquired later. The same digital camera was used 

with the same initial resolution (2048x1536). In order 

to simulate a video sequence, 120 images were 

acquired in ’burst mode’. 

In order to assess the impact of image size on the 

system’s performance (including when the training 

and target images have different sizes), the dataset 

above was duplicated with all images downsampled 

to 640x480. 

 

Fig. 5 shows the results obtained for some of the 

input target images with resolution 2048x1536. A 

visual analysis of all the results (see attached video 

as well) for all target images shows that all poses 

were successfully calculated. Nonetheless, it is not-

ed that at four occasions when a target image was 

processed in tracking mode, a sharp acceleration in 

the camera orientation occurred and the EKF predic-

tion resulted in a change of camera orientation, δα, 

slightly larger than δαmax. This resulted in the esti-

mated pose being rejected by the system and recal-

culated (successfully) in Reset mode. The reason for 

these rejections is that the low-frequency of the data 

acquisition in ‘burst mode’ (~1fps) made possible 

significant camera motions between frames. Even 

then, the system achieves accurate pose estimations 

and effectively recovers from tracking failures. 

 

 
Fig.4. Exp. 1 - Augmented reconstructed 3D scene. 

 

Tab. 1, 2 and 3 present pose estimation performance 

results obtained using the dataset with all images 

having 2048x1536 resolutions. The three tables 

report results for experiments conducted with and 

without two options: Multiple Matches (MM) and 

Guided Refinement (GR). Tab. 1 reports the average 

numbers of features used for matching and the av-

erage numbers of matches obtained (for the three 

possible modes). Tab. 2 reports the success rate in 

pose calculation, based on the software’s own as-

sessment criteria. Finally, Tab. 3 reports the average 

processing times obtained for the different modes. 

The analysis of these results shows that, as ex-

pected, MM and GR tend to improve the success 

rate in pose calculation. However, in this experiment 

at least, the improvement is not critical, since it does 

not significantly improve the pose estimation suc-

    
        (a)             (b)     (c)        (d) 

Fig.3. The process to augment a target image: (a) Target image; (b) Camera positioned in the reconstructed and aug-

mented virtual environment; (c) Texture to be projected on the target image; (d) Augmented image. 



cess rates (a visual analysis of the results shows 

that, in that particular experiment, the software actu-

ally achieves 100% in all cases.). Then, Tab. 3 

shows that the use of GR significantly impacts the 

average processing time with an average increase of 

~40%, and that the current implementation of the 

proposed tracking system does not enable pro-

cessing speeds that would support real-time applica-

tions. The issue of processing speed is investigated 

further below. 

Tab. 4 compares the performance achieved by the 

system for training and target images with different 

resolutions, after visually controlling the results. 

Clearly, the system performs best when the training 

and target images have a similar size. While this is 

generally not surprising, it also shows that the scale-

invariance property of SURF features
10

 can be put to 

the limit if the difference in image resolution is signif-

icant (given that the scene is observed from similar 

distances). These results also tend to show that 

small images actually achieve similar pose estima-

tion performance as large images, with the ad-

vantage of faster processing times (see Tab. 5). 

Tab. 5 presents computational times similarly to 

those in Tab. 3 but for training and target images with 

resolution 640x480. It appears that, although the 

number of image pixels is effectively reduced by a 

factor of 10, the computational efficiency does not 

improve that significantly. This is due to the fact that, 

although the computation of the SURF features for 

the target image is significantly sped up, the parame-

ters Starget, Sfrustum and Ssphere remain unchanged, so 

that the system calculates a similar number of 

matches. 

Tab. 6 presents computational times achieved with 

training and target images with resolution 640x480, 

and the parameters Starget, Sfrustum and Ssphere set to 

Starget = Sfrustum = 500 and Ssphere = 2, 000. The pose 

 
Fig.5. Experiment 1 - Eight of the 120 target image stream before (lines 1 and 3) and after being augmented (lines 2 

and 4). 

 

Tab. 1. Experiment 1 - Statistics of the pose calculation performance for the three modes Initialization, Tracking and 

Reset. The columns Matching and GR report the results obtained after the initial matching stage and the guided refine-

ment stage respectively. The columns DB and Match report the number of map features used for matching and the 

number of matches found. 

MM GR 

Initialization Tracking Reset 

Matching GR Matching GR Matching GR 

DB Match DB Match DB Match DB Match DB Match DB Match 

No No 2,675 114 N/A N/A 1,500 72 N/A N/A 6,000 85 N/A N/A 

No Yes 2,675 114 1,500 232 1,500 75 1,500 156 6,000 85 1,500 170 

Yes No 2,675 119 N/A N/A 1,500 88 N/A N/A 6,000 88 N/A N/A 

Yes Yes 2,675 119 1,500 286 1,500 88 1,500 217 6,000 89 1,500 214 

 



estimation quality are not impacted by these settings, 

but the processing times are further decreased (alt-

hough not that significantly). 

 

Tab. 2. Experiment 1 - Statistics of the pose calculation 

performance, as reported by the system. In brackets 

are the numbers of images processed in the particular 

mode. 

MM GR 
Success rate (system) 

Initial. Tracking Reset 

No No 100% (1) 95% (124) 100% (6) 

No Yes 100% (1) 97% (124) 100% (4) 

Yes No 100% (1) 97% (124) 100% (4) 

Yes Yes 100% (1) 98% (124) 100% (3) 

 

Tab. 3. Experiment 1 - Average computation times for 

pose calculation using training and target images hav-

ing all 2048x1536 resolution. 

MM GR 
Mean processing time (s) 

Initial. Tracking Reset 

No No 1.34 2.16 1.18 

No Yes 2.00 2.81 1.81 

Yes No 1.37 2.17 1.18 

Yes Yes 1.99 2.81 1.81 

 

Tab. 4. Experiment 1 - Comparison of the pose estima-

tion performance for different combinations of sizes of 

the training and target images. Small (S) images have 

640x480 resolution, and large (L) images have 

2048x1536 resolution. 

Image size 
MM GR 

Success rate (visual) 

Train. Target Initial. Tracking Reset 

S S 

No No 100% 100% 100% 

No Yes 100% 100% 100% 

Yes No 100% 100% 100% 

Yes Yes 100% 100% 100% 

S L 

No No 100% 88% 45% 

No Yes 100% 88% 54% 

Yes No 100% 88% 70% 

Yes Yes 100% 85% 75% 

L S 

No No 100% 98% 100% 

No Yes 100% 99% 100% 

Yes No 100% 94% 88% 

Yes Yes 100% 94% 89% 

L L 

No No 100% 100% 100% 

No Yes 100% 100% 100% 

Yes No 100% 100% 100% 

Yes Yes 100% 100% 100% 

 

Tab. 5. Experiment 1 - Average computational times for 

pose calculation using training and target images hav-

ing all 640x480 resolution. 

MM GR 
Mean processing time (s) 

Initial. Tracking Reset 

No No 0.58 0.75 0.75 

No Yes 1.25 1.22 1.21 

Yes No 0.55 0.57 0.56 

Yes Yes 1.20 1.20 1.20 

 

Tab. 6. Experiment 1 - Average computational times for 

pose calculation using training and target images hav-

ing all resolution 640x480, and the following parameter 

values are changed: Starget = Sfrustum = 500 and Ssphere = 

4Sfrustum = 2, 000. 

MM GR 
Mean processing time (s) 

Initial. Tracking Reset 

No No 0.35 0.26 0.34 

No Yes 0.45 0.39 0.46 

Yes No 0.34 0.28 0.34 

Yes Yes 0.45 0.40 0.47 

 

Experiment 2: Seoul Imperial Palace 

The results of this experiment are shown in Fig. 6 

and on the video. The experiment used 80 training 

images (surrounding the temple) and 90 target im-

ages (acquired in camera ‘burst mode’). All images 

have 2560x1920 resolutions. Fig. 6 and the video 

show the stability of the pose estimation algorithm of 

the system.  

However, a limitation of the current process is illus-

trated in Fig. 7, which shows results for the same 

experiment, but with the augmenting virtual building 

positioned behind the temple. In that particular con-

text the dense mesh reconstruction using the 

ARC3D framework didn’t achieve sufficiently good 

quality with numerous holes in the final mesh, so that 

numerous artefacts appear when computing static 

occlusions.  

Note that this issue could be addressed by using 

accurate 3D urban reconstructions (e.g. GIS level 2), 

align them with the ARC3D reconstructions and use 

them instead to calculate occlusions. 

 

 
Fig.6. Experiment 2 – Six of the 90 target image stream 

before (lines 1 and 3) and after being augmented (lines 

2 and 4). 

 

 

 



 

CONCLUSION 

A markerless monocular vision-based augmented 

reality system has been presented, with the aim of 

providing AEC professionals with a tool enabling 

them to assess project 3D digital information (e.g. 

BIM) within their actual environment.  

The performance of the system was successfully 

demonstrated on real imagery from two different 

scenes. The accuracy of the estimated poses was 

not directly estimated since no ground truth was 

available. However, the quality of the augmented 

images – in particular the calculation of occlusions – 

provides some clear observations of this accuracy. 

Nonetheless, improvements could be made in sev-

eral areas: 

 The system in its current implementation only 

achieves up to 3fps which is not fast enough to 

consider a real-time AR system. While some im-

provement could be achieved by varying some 

parameters (e.g. Starget, Sfrustum, Ssphere), transfer-

ring some data processing on the GPU also 

seems necessary. Nonetheless, as shown in this 

paper, the system may already be used in an “off-

line” manner by augmenting a video input. 

 Compared to other commonly used approaches, 

our tracking strategy does not rely on tracking 

image features (e.g. KLT
17

). Instead, it tracks the 

camera. While this approach may be more robust 

with respect to sharp changes in camera motion, 

the overall tracking is likely not as efficient. A 

combined system could be envisaged. 

 Similarly, the current system does not rely on any 

global positioning or inertial system. While this 

brings some advantages, it also brings some limi-

tations (e.g. GPS would be useful for initialization 

and resetting modes). A hybrid pose estimation 

module could thus be investigated. 

 Since the focus of this work is on urban aug-

mented reality, positioning techniques based on 

planar structures
18

 could be investigated. 

 Further culling of the database features may also 

be achieved by considering some feature visibility 

criterion
19

. 

 While the system is designed to handle scenes of 

the size of a neighbourhood, further testing 

needs to be conducted using larger reconstructed 

scenes.  

Finally, it must be emphasized that there is one limi-

tation that is inherent to vision-based localization 

approaches, which is that they perform adequately 

only when the scene presents sufficient structure. 

Therefore, the current system would likely fail in the 

case of greenfield projects with little built environ-

ment in the surroundings. 
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