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Abstract

In this paper we present a novel visual-inertial 6-DOF localization
approach that can be directly integrated in a wearable immersive
system for simulation and training. In this context, while CAVE
environments typically require complex and expensive set-up, our
approach relies on visual and inertial information provided by com-
modity hardware, i.e. a consumer monocular camera and an Inertial
Measurement Unit (IMU).

We propose a novel robust pipeline based on state-of-the-art image-
based localization and sensor fusion approaches. A loosely-coupled
sensor fusion approach, which makes use of robust orientation in-
formation from the IMU, is employed to cope with failures in visual
tracking (e.g. due to camera fast motion) in order to limit motion
jitters. Fast and smooth re-localization is also provided to track
position following visual tracking outage and guarantee continued
operation. The 6-DOF information is then used to render consis-
tently VR contents on a stereoscopic HMD. The proposed system,
demonstrated in the context of Construction, runs at 30 fps on a
standard PC and requires a very limited set-up for its intended ap-
plication.

Keywords: 6-DOF navigation, visual-inertial tracking, natural
walking, commodity hardware

1 Introduction

Recent advances in the simulation capabilities of VR systems have
stirred up the interest for immersive simulation and training in dif-
ferent fields. Indeed, immersive environments can be used to sim-
ulate varying operative scenarios, so that the user can experience
critical situations and interact with them without being exposed to
health and safety hazards. In this context, navigation of virtual envi-
ronments can be achieved by assigning the user’s viewpoint through
input devices (e.g. joystick, 3D mouse), and/or by tracking the nat-
ural walking (head) of the user. In particular, the latter type of inter-
face is intuitively more natural and can provide, by involving visual,
vestibular and proprioceptive systems, a more consistent and com-
fortable perception of the explored environment. Benefits in terms
of increased spatial awareness, presence, and reduced cybersick-
ness have been emphasized in different works [Chen et al. 2013].

Accordingly, the localization stage, which aims at estimating in real
time the position and orientation of the user’s head during his move-
ments, is of critical importance. Existing VR applications have
emphasized how robustness, accuracy and precision, as well as
real-time performance, still represent crucial open issues [Welch
and Foxlin 2002]. Similarly, complexity in system set-up, range
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scalability, as well as cost effectiveness are deemed relevant crite-
ria for the design and the assessment of tracking systems. CAVE
systems [Cruz-Neira et al. 1992], which represent the standard for
3D immersive environments, often implement head tracking by
tracking IR markers through multiple cameras/sensors [Welch and
Foxlin 2002], with the rendered scene projected on wide screens
surrounding the user. Existing commercial systems employed in
such environments require dedicated facilities, on-purpose calibra-
tion and set-up procedures, with significant impact on the overall
complexity and cost.

For these reasons, recent research efforts have aimed to reach a
good trade off between acceptable performance and overall system
complexity and cost. In particular, recent developments in com-
puter vision, HMD and other technologies are paving the way for
a wide diffusion of commodity devices that can be integrated into
systems that are robust and very cost-effective. For example, a con-
ceptual demonstration of the potential use of consumer hardware
(Nintendo’s Wii games console) in optical tracking has been pre-
sented in [Hay et al. 2008].

In this work an inside-out tracking approach, relying on the com-
plementary action of visual and inertial tracking, is proposed. The
6-DOF pose of the trainee’s head is estimated by robustly integrat-
ing visual information acquired by a monocular camera and inertial
data provided by an Inertial Measurement Unit (IMU) integral with
a stereoscopic HMD (Fig. 1). The main contribution consists in a
novel localization pipeline conceived to cope with fast changes in
motion patterns and limit drift and jitter effects, so to minimize sys-
tem outage and provide consistent user experience. 6-DOF global
localization is initially achieved through image registration with re-
spect to a 3D map of visual descriptors of the training room, built
off-line in advance using Structure from Motion (SfM). A feature
tracking strategy exploiting spatio-temporal contiguity among con-
secutive video frames is employed to track the pose in real time pre-
serving robustness over prolonged periods. In addition, orientation
data provided by the HMD’s IMU at high rate (1 kHz) are jointly
employed to estimate the pose, acting as the main sensor when vi-
sual tracking fails. A loosely-coupled sensor fusion strategy is used
in order to filter all the data and stabilize trajectory.

The effectiveness of our system (whose hardware cost is around
500$) is demonstrated in the context of natural navigation in VR
scenarios for Construction training.

Figure 1: Illustration of the main components of the proposed im-
mersive sytem.



2 Related Works

In view of the considerations above, we focus on two on-line lo-
calization methods, i.e.vision-based global localization and inertial
tracking, and their integration due to their complementary advan-
tages.

Research on vision-based approaches has recently focused on land-
mark and model-based (e.g. CAD [Bleser and Stricker 2008])
global localization methods [Oskiper et al. 2011; Zhu et al. 2008].
Global localization approaches estimate the camera pose from 2D-
3D correspondences of image features, extracted from the current
image, with a set of 3D landmarks of the scene, encoded in a
database of visual descriptors. This approach does not suffer from
error accumulation (drift) and allows robust relocalization. How-
ever, limited matching accuracy, resulting from image poor qual-
ity (e.g. motion blur) and 3D reconstruction errors, can result in
jitter. Different strategies have been adopted for implementing ro-
bustly and efficiently all the stages involved, i.e. scene encoding and
database construction [Zhu et al. 2008; Lim et al. 2012], feature de-
tection, description and matching [Gauglitz et al. 2011]. However,
these methods do not overcome the inherent lack of robustness of
vision-based localization methods to fast motion blur.

Inertial and vision-based approaches can benefit from each other,
providing backup solutions in case of dropout of one of the two,
or aiding each other. A considerable number of works (e.g. [Os-
kiper et al. 2011; Bleser and Stricker 2008; Aron et al. 2007]) have
discussed different strategies to combine visual and inertial infor-
mation. However, how to optimally fuse those data so to reach a
good trade-off between complexity, computational load and overall
robustness still represents an open issue [Bleser and Stricker 2008;
Oskiper et al. 2011]. Several approaches rely on vision-based track-
ing as the main strategy that is then supported by inertial data when
visual information is unreliable [Aron et al. 2007] (e.g. fast motion,
occlusion, poor scene modelling). Alternatively, systems mainly
relying on inertial tracking can be aided by guided visual registra-
tion. In [Bleser and Stricker 2008], the use of different kinds of
inertial models has been investigated, also discussing the impact of
integration of accelerometer data for position tracking. However,
in general positional initialization requires a semi-automatic proce-
dure, and due to the inherent dead reckoning effect, filter divergence
must be robustly detected and handled.

3 Key Stages of the Proposed Approach

The proposed method relies on two fundamental stages. First, an
off-line visual reconstruction stage is performed in advance, once
and for all, to encode the visual structure of 3D natural landmarks
present in the scene into a database of visual descriptors, or map, as
described in Sect. 4. During on-line operations, an hybrid localiza-
tion approach couples in an Extended Kalman Filter (EKF) frame-
work the robust high-rate orientation data from the IMU with visual
information from landmark matching and frame-to-frame tracking
to robustly estimate the head’s pose. Specific strategies are pro-
posed to detect failures in visual tracking and relocalize the system,
preserving real time performance, as detailed in Sect. 5.

The proposed method is supposed to work in a sufficiently tex-
tured environment, but without particular constraints about the
scene’s geometrical structure (e.g. not necessarily planar [Aron
et al. 2007]). It has been assessed in a room whose walls have
been covered with posters with a random layout, so without requir-
ing installation of calibrated landmarks with specific configuration
which can be complex and time-consuming. The system also does
not require the calibration of multiple cameras. This test environ-
ment, even if of limited size, presents most of the challenging issues

common to the localization problem in general contexts. Moreover,
exploration of large virtual environments can still be achieved by
means of techniques like redirected walking [Williams et al. 2007].

4 Off-Line Reconstruction Stage

Given an input sequence of images of the scene taken from differ-
ent viewpoints, a sparse 3D reconstruction (point cloud) based on
SIFT features is initially performed using the Bundler SfM frame-
work [Snavely et al. 2008]. Due to the computational effort required
by SIFT, which would affect time performance during on-line oper-
ations, an approach similar to the one employed in [Lim et al. 2012]
is adopted to compute more efficient descriptors, with the aim of
simultaneously preserving a good trade-off with robustness. Two
different approaches in terms of detection, description and match-
ing of visual features have been considered. The first approach is
based, for both detection and description, on the widely used SURF
features, which offer a good trade-off between robustness and com-
putational performance. The second approach makes use of binary
features for both detection, using ORB keypoints , and description,
employing BRISK. In particular, binary features have the advantage
of providing very fast detection as well as efficient computation and
matching of compact descriptors, with comparable robustness for
most common situations (see [Heinly et al. 2012] for a compara-
tive evaluation).

5 On-Line Localization Stage

During on-line operations, the global pose of the user’s head is es-
timated at each time instant t from synchronized pairs of images
(I(t)) and IMU data (Γ(t)), {I,Γ}t , according to different modes,
detailed in the following paragraphs.

5.1 Pose Initialization

In the INITIALIZATION mode, the absolute pose of the camera
is determined from scratch through a visual matching approach. A
set of query descriptors is computed for Nextr keypoints extracted
from the current camera image and matched with the descriptors
of the whole scene map through fast approximate nearest neigh-
bor search. Given the set SM(t) of the 2D-3D correspondences,
the absolute camera pose is estimated by using the 3-point algo-
rithm [Haralick et al. 1994] within a RANSAC framework for ro-
bust geometric verification.

After the very first initialization, a camera-IMU “hand-eye” cali-
bration procedure is also performed. The calibration matrix, refer-
ring the inertial measures to the global reference frame, is estimated
from {I,Γ}t pairs according to the classical hand-eye calibration
equation. However, in our system only the rotational component
of the calibration matrix needs to be estimated, since IMU accel-
erations are not directly employed for pose estimation (this rapidly
resulting in positional drift). Accordingly, the centripetal compo-
nent can be neglected. This permits to combine on-the-fly the sim-
plified calibration equations for a batch of {I,Γ}t orientation pairs,
acquired during the first Ncalib frames, and solve the resulting sys-
tem in a least square sense.

5.2 Tracking

Once successfully initialized, the system enters the TRACKING

mode, where pose tracking is performed by fusing the visual and
inertial data in an EKF framework.

As far as the visual information is concerned, the global matching
stage may not always be sufficiently reliable (e.g. during fast mo-



tion) or efficient for real-time requirements. Frame-to-frame track-
ing can provide more robustness and precision, since it exploits
spatio-temporal continuity between consecutive image frames, but
it can lead to long term drift. A framework based on the Kanade-
Lucas-Tomasi (KLT) tracker [Shi and Tomasi 1994], capable to
handle moderate translations, has been employed. The tracker is
initialized with the 2D locations of the keypoints of the set SM(t)
obtained during pose initialization/relocalization. However, as the
camera moves, keypoints get lost. Accordingly, a robust procedure
to update the tracker has been implemented to ensure prolonged
tracking. To identify when the tracker should be updated, a spa-
tial skewness coefficient γ is computed for each frame using the
(sub)set of successfully tracked keypoints, ST (t). For calculating
γ , the image frame is divided into a lattice of L = 4×4 = 16 cells,
called frame keypoint occupancy map, and for each occupancy map
cell, C, the density score ρ = |ST ∩C|/ |C| (where |.| returns the
set count) is compared with the expected score for a uniform dis-
tribution, ρuni = 1/L. Given the number of cells with score below
ρuni, Nb, and the number of cells with score above ρuni, Na, we fi-
nally calculate γ = (Nb −Na)/L. If γ falls below γmin = 0.65, the
tracker is re-initialized by uniformly sampling a maximum number
k1 = 160 3D points of the map within the camera frustum. These
points are then projected on the image plane, thus providing again a
uniform set of 2D-3D correspondences, i.e. keypoints, to be tracked
in the subsequent frames. For each successfully tracked frame, pose
estimation is performed as described in Sect. 5.1, but employed just
to filter the outliers and return a set of robust 2D-3D correspon-
dences SI(t) to be fed into the sensor fusion framework for pose
filtering.

This solution is very efficient, but it can fail in case of image degra-
dation (fast motions), or occlusions. In these cases, the system en-
ters the TRACKING IMU mode that relies on the IMU data alone.
Among different possible strategies, we have chosen to assume the
position fixed during complete visual outage, and frequently invoke
the RELOCALIZATION (Sect. 5.3). The intent of this approach is
to limit the time interval of visual outage and accordingly positional
drift.

5.2.1 Sensor Fusion

Different approaches have been adopted in the literature for the
design of the EKF stage for visual-inertial systems [Bleser and
Stricker 2008; Aron et al. 2007]. The “constant velocity, constant
angular velocity” model has been widely used as a simplified lin-
ear motion model involving position and orientation first deriva-
tives while treating accelerations as noise. However, this kind of
models can often lead to divergence or wrong convergence [Perea
et al. 2007], due to the poor modeling of real motions and to non-
linearities, so that positional and rotational variables are not un-
coupled. To cope with these issues, we use a loosely-coupled ap-
proach, which relies, by means of the calibration matrix, on the
global orientation robustly estimated by the IMU. The constant ve-
locity model is simplified so that the state x contains only the posi-
tional variables x = [p ṗ]. The measurement equation employs the
measured 2D-3D correspondences from the inliers set SI(t) and the
predicted projections m− of the 3D points on the image plane, ac-
cording to the camera projective model (with intrinsic parameters
and lens distortion estimated during the off-line stage). In this way,
the effect of non-linearities and error coupling is reduced, generally
leading to more stable pose estimates.

The EKF fails if an excessive state variation or increase in
residuals (divergence) are detected, bringing the system to the
TRACKING IMU mode.

Table 1: On-line Sequences

Map Seq. #F(mins) #Floc #FIMU TM(ms) TT (ms)

SURF SEQ1 7200 (4) 2600 (36%) 4600 (64%) 286 ± 15 21 ± 5

SURF SEQ2 3600 (2) 2660 (74%) 940 (26%) 299 ± 22 19 ± 3

BRISK SEQ1 7200 (4) 4634 (64%) 2566 (36%) 142 ± 28 25 ± 6

BRISK SEQ2 3600 (2) 2858 (80%) 742 (20%) 130 ± 27 20 ± 3

The number of frames (#F) and duration (mins), the number of frames localized
by the sensor fusion approach (#FLoc), and in the TRACKING IMU mode (#FIMU ),
together with related timings (in ms, mean ± std.dev.) for the matching (TM) and
tracking (TT ) stages, are summarized for the two sequences processed according to
different visual features (SURF/BRISK).

5.3 Relocalization

The RELOCALIZATION stage is implemented similarly to the
INITIALIZATION stage, but performing feature matching only
for map points contained within an expanded camera frustum,
i.e. by considering a camera sensor with width and length both
twice larger than the nominal one. The resulting pose is then fil-
tered through the EKF.

RELOCALIZATION is best invoked when the IMU measures a
quasi-static condition, i.e. the norm of the (gravity-compensated)
acceleration vector and the angular rotation are below the thresh-
olds Macc = 0.2 (m/s2) and Mrot = 0.3 (rad/s), respectively. Indeed,
in this condition images are likely to be more stable, which aids the
visual relocalization.

If RELOCALIZATION fails, the system remains in
TRACKING IMU mode for up to a maximum of Nlost con-
secutive failures, after which INITIALIZATION is invoked.

6 Experimental Results

The wearable immersive system consists of a PtGrey FireFlyMV
camera (30 fps, 640× 480), equipped with a varifocal lens (3 - 8
mm), mounted integrally with an OculusVR Rift HMD. Tests were
performed in a rectangular room (Fig. 1) on an area of 3.75 m ×
5.70 m. In order to assess properly the on-line performance of our
approach, an approach similar to the method used in [Oskiper et al.
2011] is employed. A dense virtual model of the room has been
reconstructed by re-meshing a laser point cloud and registered with
the map’s 3D point cloud. In this way the views of the virtual room,
rendered according to the estimated pose, can be visually compared
to the acquired images that constitute an indirect ground truth. We
report the results related to two on-line sequences whose details
are summarized in Table 1. The system performed live at approxi-
mately 30 fps on average using a Dell Aurora Alienware PC.

6.1 Test 1 – Free motion

The sequence SEQ1 (4 mins), containing multiple motion patterns
(2 looping paths, rotation on approximately fixed position, fast mo-
tions), is analyzed in the following. In Fig. 2, images acquired by
the camera are shown next to the rendered views of the room model
at four different time instants, initially with good visual agreement
(Fig. 2, first two columns). During the subsequent fast motions,
the SURF method enters the TRACKING IMU stage, which means
that it does not capture the positional variations. Because SURF
matching is slow, relocalization using SURF cannot be invoked too
frequently in order not to impact time performance. As a result,
the system is more prone to positional drift, which is quite notice-
able after a prolonged outage of the visual tracking stage (Fig. 2,
third and fourth column). In contrast, the relocalization by BRISK
matching can be invoked more frequently without affecting too neg-
atively the time performance, limiting the risk of prolonged outage



Figure 2: Test 1: real camera images (top), and rendered views of
the virtual room for BRISK (center) and SURF (bottom) for four
sample time instants (columns).

of the visual tracking stage. Indeed by using BRISK visual agree-
ment (Fig. 2) is still good after relocalization (third column), with
limited drift even after a long tracking period (fourth column).

6.2 Test 2 – Looping path

The sequence SEQ2 (2 mins) is a looping-path sequence and it is
analyzed to evaluate the accuracy (in particular drift) of our method.
The system is initially lifted from a predefined location, then head’s
free rotations are performed at different velocities (also pointing to
untextured areas). The user keeps the waist fixed, but still limited
translations of the head (shaking, bending) are performed, before
returning to the predefined starting position. The 3D loop closure
error is 0.09 m for the BRISK method, and 0.13 m for the SURF
method.

7 Application

The proposed system is intended for simulating hazardous work-
ing conditions (such as working at heights) in vocational training
in Construction. The video accompanying this paper shows two 6-
DOF navigation experiments for a user immersed within a virtual
model of a scaffold with an approximate height of 10 meters, over-
looking a city model. In particular, the different working stages of
the tracking system during natural walking within the training room
are shown together with the camera stream, for a free path present-
ing fast motions (the system is hand-held) and for a looping path,
respectively.

8 Conclusion

We presented a real-time 6-DOF tracking approach based on visual-
inertial sensor fusion, in the context of the development of an af-
fordable immersive system for simulation and training. The sys-
tem relies on a single camera integral with an immersive stereo-
scopic HMD which embeds an IMU with high sampling rate, whose
cross-calibration is performed automatically on-the-fly. The differ-
ent strategies employed to deal with challenging situations (fast mo-
tion, untextured areas) and limit the impact of negative factors on
user experience (drift, jitter) are analyzed. Live experiments have
shown an overall good consistency for different motion patterns; the
role of fast and frequent relocalization has proved to be crucial in
limiting drift and jitter effects. In that context, a method for robust
integration and interleaving of global matching and visual tracking,

both aided by IMU information, is currently under development to
better filter the pose estimations minimizing the additional latency.
This aims at improving the localization consistency, which is cru-
cial to deliver a comfortable user experience.

References

ARON, M., SIMON, G., AND BERGER, M.-O. 2007. Use of iner-
tial sensors to support video tracking. Comput. Animat. Virtual
Worlds 18, 1 (Feb.), 57–68.

BLESER, G., AND STRICKER, D. 2008. Advanced tracking
through efficient image processing and visual-inertial sensor fu-
sion. In IEEE VR ’08, 137–144.

CHEN, W., PLANCOULAINE, A., FÉREY, N., TOURAINE, D.,
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