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Abstract:  Augmented Reality (AR) is a rapidly 

developing field with numerous potential applications. For 

example, building developers, public authorities and other 

construction industry stakeholders need to visually assess 

potential new developments with regard to aesthetics, 

health & safety, and other criteria. Current state-of-the-art 

visualization technologies are mainly fully virtual, while AR 

has the potential to enhance those visualizations by 

observing proposed designs directly within the real 

environment. 

A novel AR system is presented, that is most appropriate 

for urban applications. It is based on monocular vision, is 

markerless and does not rely on beacon-based localization 

technologies (like GPS) or inertial sensors. Additionally, 

the system automatically calculates occlusions of the built 

environment on the augmenting virtual objects.  

Three datasets from real environments presenting 

different levels of complexity (geometrical complexity, 

textures, occlusions) are used to demonstrate the 

performance of the proposed system. Videos augmented 

with our system are shown to provide realistic and valuable 

visualizations of proposed changes of the urban 

environment. Limitations are also discussed with 

suggestions for future work. 

 

 

1 INTRODUCTION 

 

Public authorities, building developers and other 

construction industry stakeholders need to assess the impact 

of potential urban developments with regard to aesthetics, 

health & safety, buildability and many more criteria. 

Current state-of-the-art visualization technologies are 

mainly fully virtual. In comparison, Augmented Reality 

(AR) has at least one crucial advantage, namely that designs 

can be visualized directly within the real environment 

instead of within an entirely virtual world (De Filippi and 

Balbo, 2011), (Woodward et al., 2010). 

This article presents an AR system aiming towards 

applications in which the urban environment is augmented 

with virtual static and dynamic objects, such as buildings 

and people. The distinctive characteristics of the proposed 

system are that it is markerless and does not rely on any 

local or global positioning technology, or any inertial 

sensors; the system only uses digital images. In addition, 
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the proposed system can accurately generate occlusions of 

the augmenting material (i.e. the inserted virtual objects) by 

the real static environment. This significantly contributes to 

highly realistic outputs – although occlusions by real 

dynamic objects cannot be addressed by our current system. 

The rest of the article is organized as follows. Section 2 

reviews existing related work in AR and localization (the 

most challenging task for AR systems). Then, Sections 3 to 

6 detail the approach developed in the proposed system. A 

detailed analysis of the system’s performance with multiple 

experiments conducted using real data follows in Section 7. 

Finally, Section 8 draws conclusions and adds 

considerations on open issues and future developments.  

It is important to note that, although the proposed system 

is presented in the context of visualization of urban 

developments, it is certainly applicable in other contexts. 

 

 

2 BACKGROUND: AR AND LOCALIZATION 

 

The most challenging task for AR systems is the accurate 

localization of the viewpoint within the given scene. 

Localization refers to the calculation of both the location 

and orientation of the viewpoint. The problem of real-time 

localization in environments with different complexity has 

been extensively investigated in recent years for its key role 

played in Robotics and AR (Azuma et al., 2001), (Durrant-

Whyte and Bailey, 2006). 

Localization can be performed with different – often 

integrated – sensors such as global and local positioning 

technologies (e.g. GPS, WIFI), Inertial Measurement Units 

(IMU) and environment sensors (Azuma et al., 2001), 

(Comport et al., 2006), (Shin and Dunston, 2009), 

(Sanghoon and Omer, 2011), (Behzadan and Kamat, 2010). 

The latter – e.g. digital cameras, radars, laser scanners – 

enable environment mapping and subsequently localization. 

During mapping, features are extracted from sensed data 

and localized, creating environment landmarks. During 

localization, features are similarly extracted from the 

sensed data and matched to the mapped features. The 

matches are used to estimate the pose of the sensor. In 

Robotics, localization is also often performed jointly with 

mapping of unknown environments, following a 

Simultaneous Localization and Mapping (SLAM) approach 

(Leonard and Durrant-Whyte, 1991), (Durrant-Whyte and 

Bailey, 2006), (Klein and Murray, 2007), (Newcombe and 

Davison, 2010). 

 

2.1 Offline mapping 

When the environment is known a priori, then it is 

possible to map it offline. Offline mapping can be achieved 

in different ways: 

 Fiducial markers can be introduced and localized in 

the environment, so that online localization can be 

achieved by simply recognizing them using an 

appropriate sensing pipeline (Sanghoon and Omer, 

2011), (Yakubi et al., 2011). 

 Physical features of the scene can be learnt and 

mapped offline using environment sensing, and online 

localization is achieved by using a similar sensing 

pipeline (Reitmayr and Drummond, 2006), (Gordon 

and Lowe, 2004). 

Fiducial marking typically leads to more accurate 

localization results, but it requires intrusive and accurate 

positioning of markers within the environment. Markerless 

systems, on the other hand, are not invasive, but may result 

in less reliable positioning (Reitmayr and Drummond, 

2006). Within markerless systems, vision-based mapping 

and localization is very popular, because (1) digital cameras 

are robust, compact and inexpensive (Neumann et al., 

1999); and (2) Structure-from-Motion (SfM) algorithms are 

providing a sound tool for scene mapping (Pollefeys et al., 

2004). 

Vision-based localization systems can use several types 

of features to map the environment, such as lines, points or 

even registered images (Gordon and Lowe, 2004), 

(Karlekar et al., 2010), (Reitmayr and Drummond, 2006), 

(Simon et al., 2000), (Inam, 2009). For instance, Inam 

(2009) uses line features to locate robots with respect to 

soccer goal posts in the RoboCup contest, while Wolf et al. 

(2005) present a strategy based on image retrieval for the 

localization of a robot in an indoor environment. 

 

2.2 Localization 

During online localization, robustness and stability in the 

camera pose estimation throughout its motion are 

challenging requirements (Comport et al., 2006). This is 

particularly true in AR applications: since the visualization 

of the real scene is to be augmented with virtual objects in a 

scene-consistent way, any localization error can result in 

gross errors in the augmented imagery. As a result, for 

improved robustness but also efficiency, tracking strategies 

are commonly implemented, e.g. Kalman Filtering (Bishop 

andWelch, 2001), (Capp et al., 2007). Non-deterministic 

approaches using Monte-Carlo Localization are also used 

(Wolf et al., 2005), (Inam, 2009). 

Furthermore, it is possible during online processing to 

incrementally expand the initial scene maps by identifying 

new reliable features with SLAM-type approaches (Saeki et 

al., 2009). 

 

 

3 OVERVIEW OF PROPOSED SYSTEM 

 

We propose a markerless monocular vision-based 

approach for localization within an urban scene. Since in 

our context the environment can be visited beforehand, a 

map of the environment can be learnt offline. Consequently, 

our system particularly relates to the works of Gordon and 

Lowe (2004) and Newcombe and Davison (2010). Like 
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them, we do not rely on any global positioning or inertial 

sensors. And like Newcombe and Davison (2010), our 

mapping stage simultaneously performs a dense 3D mesh 

reconstruction of the scene, so that static occlusions of the 

learnt scene on the inserted virtual objects can be taken into 

account when augmenting the target imagery. However, 

compared to Newcombe and Davison (2010) who focus on 

SLAM, we work with less controlled outdoor scenes and do 

not aim to reconstruct them in real-time. Additionally, our 

context is different, as the scale of the scene is typically set 

by the augmentations (i.e. the inserted virtual objects) and 

the positioning and scaling of the 3D reconstructed scene 

with respect to these augmentations must be performed very 

accurately. In the gaming AR example presented in 

Newcombe and Davison (2010) this is not an issue: scaling 

and even localization of the augmenting material with 

respect to the real environment is not critical and thus can 

be defined arbitrarily. 

Our system uses a two-stage approach (see Figure 1): 

1. Offline learning/training stage. During this stage, the 

3D scene is first learnt and then augmented with 

virtual elements. For mapping the scene, Speeded-Up 

Robust Features (SURF) (Bay et al., 2006) are 

extracted from a set of training images and assigned 

3D coordinates by using a SfM algorithm followed by 

a robust Euclidean bundle adjustment algorithm. This 

process constructs a map of 3D-referenced visual 

features, also called database hereafter. Subsequently, 

a dense reconstruction of the scene is produced, 

resulting in a 3D mesh of the scene. This mesh is used 

(1) offline to augment the scene with virtual objects, 

and (2) online to compute occlusions. 

2. Online processing stage. During this stage, images of 

a target image sequence (e.g. a video sequence) are 

processed sequentially. For each target image, SURF 

features are first extracted from it and efficiently 

matched with the mapped ones. Correspondences are 

then used to estimate the camera pose within the learnt 

scene using a robust approach. Finally, the target 

image is augmented by projecting on it the virtual 

scene objects, taking into account occlusions of the 

virtual objects by the reconstructed scene. 

The processes used in the offline and online stages are 

detailed in Sections 4 to 6. Note that the online stage is 

entirely automated, while the offline is almost entirely 

automated. The only manual step is the insertion of virtual 

elements in the reconstructed 3D scene model. 

 

 

4 OFFLINE LEARNING/TRAINING STAGE 

 

4.1 Learning the scene 

The input to the learning stage includes a set of images of 

the scene of interest, called training images, with 

corresponding camera intrinsic parameters. The aim is to 

build a map of 3D-referenced SURF features (Bay et al., 

 
Figure 1 Overview of the proposed image-based AR system. 
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2006) extracted from the training images. This can be 

performed in different ways, including: 

 Using a prior non-textured 3D model of the scene: 

Through a Graphical User Interface (GUI), for each 

training image the user manually matches several 3D 

model points with their corresponding image points. 

From these 2D-3D correspondences and knowing the 

camera intrinsic parameters associated with the image, 

the pose of the associated camera within the 3D scene 

model is estimated using the 3-point algorithm 

(Haralick et al., 1994). Knowing this camera pose with 

respect to the 3D scene model, the 3D coordinates of 

SURF features extracted from the training image are 

calculated by reprojecting them onto the scene model. 

 Using SfM and Bundle Adjustment: SfM enables 

the 3D-registration of the training images’ cameras 

with respect to one another. SURF features are used in 

an initial sparse matching step to find corresponding 

points between images that are triangulated into a 3D 

point cloud. A subsequent robust Euclidean Bundle 

Adjustment from candidate views directly registers the 

already extracted SURF features in the reconstructed 

Euclidean 3D reference frame to build the map of 3D-

referenced features. This approach, summarized in 

Figure 2, is fully automated. We use the ARC3D 

framework (Tingdahl and Van Gool, 2011) for 3D 

reconstruction and self-calibration. 

Note that the robustness of SURF descriptors to scale 

changes allows to relax some constraints about camera 

motion during the reconstruction process (normally 

constrained to turn around the scene to be 

reconstructed), permitting the combination of camera 

paths at different distances from the building. 

 

These two training approaches were tested with image 

sets acquired from the main square of the EPFL campus in 

Lausanne (Figure 3(a)). When these sequences were 

acquired, camera motion was not constrained in any 

particular way. For the first approach, a rough, but typical, 

untextured 3D CAD model of the scene was used (Figure 

3(b)). The results however showed that the quality of such 

coarse 3D models is too low for successful image 

registration: the manual feature matching leads to 

registrations that were found too inaccurate, as can be seen 

with the reprojected model wireframe in Figure 3(c). 

Additionally, this model-based training approach requires a 

potentially long mapping procedure involving substantial 

human interaction. For these reasons, the second approach 

based on SfM was preferred (whose results with the EPFL 

dataset are reported in Section 7.2). 

 
 

4.2 Augmenting the scene 

As previously mentioned, we use the ARC3D framework 

(Tingdahl and Van Gool, 2011) for mapping the scene. 

Similar work can also be found in (Zhang and Elakser, 

2012).  

ARC3D actually provides us with an important feature 

that is of particular interest to our system. In addition to the 

3D reconstruction, using the same input images ARC3D 

enables a dense reconstruction of the acquired scene in the 

form of a 3D mesh. Compared to the point cloud of the 

reconstructed map, this mesh offers two advantages: 

1. It visually simplifies the manual insertion of virtual 

objects in the scene. 

2. During online processing, it enables the computation 

of occlusions of the virtual objects by the 

reconstructed scene. 

Figure 4 shows an example of the dense reconstruction of 

the EPFL campus scene augmented with a virtual building. 

Note that in the case when a virtual object is aimed to 

replace an existing one (e.g. a building is planned to be 

demolished and replaced by a new one), the user must 

remove from the ARC3D-reconstructed mesh the parts 

corresponding to the objects to be replaced. This ensures 

that occlusions caused by the objects to be replaced are not 

taken into account when augmenting the target images with 

the new objects (see Section 6 and example in Figure 11). 

The organization of the map data (i.e. 3D-referenced 

feature points and corresponding SURF descriptors) must 

take into account the way the data is utilized and the 

constraints that are faced during the online camera pose 

estimation; it should thus prefer some aspects rather than 

 
Figure 2 Outline of the offline training stage. SURF 

descriptors and 3D points reconstructed by ARC3D on a 

sequence of training images are used to build the map of 

3D-referenced SURF features. 
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others. The strategy followed is presented in the following 

section along with the online localization procedure. 

 

 

5 ONLINE LOCALIZATION 

 

5.1 General approach 

During online operations, the system processes the target 

image sequence (e.g. images from a video sequence). For 

each target image, SURF features are extracted and 

matched with the SURF descriptors in the database (using 

the Euclidean distance in a 64-dimensional space). Matched 

descriptors allow the system to establish correspondences, 

called matched 3D points, between the 2D image 

coordinates of the target image features and the 3D 

coordinates associated to the matched map features. 

Knowing the camera intrinsic parameters, the camera pose 

is then estimated from these correspondences by wrapping 

the 3-point algorithm (Haralick et al., 1994) in a Random 

Sampling and Consensus (RANSAC) framework (Fischler 

and Bolles, 1981). This results in an initial pose estimation 

that is subsequently used in a Guided Refinement (GR) 

process. In this process, the frustum-culled database 3D 

points are reprojected on the image plane of the target 

image, and matches to the target image descriptors are 

identified within a radius of ρ2D pixels (we use 5 ≤ ρ2D ≤ 15 

pixels). This enables reassessing all initial matches and 

identifying additional ones. A refined pose estimation is 

then obtained by putting all matches into a Levenberg-

 (a) 

 (b) 

 (c) 

Figure 3 Illustration of the limitations of the mapping approach using a non-textured 3D model of the scene. (a) View of 

the EPFL campus scene; (b) Non-textured 3D model of the EPFL campus in Lausanne; (c) Reprojection of the wireframe 

lines of the 3D model of a building during the training stage. 

 
Figure 4 Dense reconstruction of the EPFL campus 

scene obtained using ARC3D (Tingdahl and Van Gool, 

2011). The scene is then augmented with a virtual 

Parisian-styled building. 
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Marquardt non-linear pose optimization algorithm (Nocedal 

and Wright, 2006). 

 

5.2 Matching process optimization 

As the number of training images increases, along with 

their sizes, the map of 3D-referenced features can rapidly 

become very large (thousands of features). As a result, to 

avoid latency in the system, a strategy must be in place to 

prevent brute force matching during online operations. 

We first implement a commonly used strategy that 

consists in partitioning the SURF descriptor space into a k-

d tree (Beis and Lowe, 1997), (Gordon and Lowe, 2004), so 

that only the subspace associated with the target descriptor 

is visited, effectively reducing the computational payload. 

Secondly, we propose to discard SURF features with low 

reliability, or strength, from the database and from the 

target image. SURF strength is associated to the Hessian 

response (Bay et al., 2006). It depends on the scene feature, 

the viewpoint and the lighting condition of the image, thus 

capturing the repeatability of the feature compared to the 

other ones in that particular image. For the target image, we 

select the Starget strongest features for matching (we use 

Starget = 1, 500 by default). 

For the database, the situation is more complex as the 

features effectively come from multiple training images 

within which they present varying strengths. In order to 

obtain a global SURF strength, we propose to assign to 

each 3D reconstructed point the average of the strengths of 

the SURF features corresponding to that point. This way, 

SURF descriptors can be sorted globally and only those 

with a high average repeatability can be retained. Of course, 

more sophisticated algorithms for weighting the different 

strengths could be implemented. The actual number of 

database features retained for matching then depends on 

three different configurations, as detailed below. 

 

Additional heuristics can be used to increase matching 

performance depending on three different configurations, or 

modes, that can be encountered: (1) Pose initialization; (2) 

Pose tracking; (3) Pose resetting. The cases when these 

modes are considered and the methods applied for 

optimizing matching in each case are detailed in the 

following sub-sections. Figure 5 summarizes the on-line 

localization processing strategy. 

 

5.2.1 Pose initialization. This mode is applied when no 

reliable information on previous camera poses is available, 

i.e. if the pose of the camera has not been successfully 

tracked within the last n images (we use n = 20). Note that 

this mode is applied at least once, on the very first target 

image. 

Using only the general approach described earlier, the 

(globally) strongest map features would be used for 

matching. The issue is that if too few features are used, 

these may not sufficiently cover the entire scene for a 

sufficient number of matches to be obtained, and 

consequently an initial pose to be confidently estimated. 

Therefore, it must be ensured that enough of the strongest 

database features are used and these also cover the 3D 

scene as uniformly as possible. We refer to this criterion as 

spatial spread. 

To achieve this spread, we arrange the 3D-referenced 

feature points into an octree, where each cell represents a 

partition (cuboid) of the 3D scene. A full octree is first 

populated with all the 3D feature points, splitting each cell 

once the number of points it contains reaches a threshold 

N′max (we use N′max = 400).  

Then, we construct a pruned octree. This is done by 

removing from the full octree all the cells with a side 

smaller than Vmin. For each removed sub-tree, all its feature 

points are aggregated in the parent cell (i.e. the first cell 

without a side smaller than Vmin). Finally, for each of those 

parent cells (which are now leaf cells), the features are 

sorted according to their global strength and only the Nmax 

strongest ones are retained. Those 3D feature points 

represent a sub-set of the original point set that is as 

homogeneously spatially spread as possible. In our setup, 

we use the parameter values Nmax = 200 and Vmin = 5m. 

Note that Nmax can be automatically derived from Vmin. Note 

also that the full and pruned octrees both only need to be 

calculated once offline. 

In summary, in initialization mode, the search for feature 

matches is performed on the pruned octree constructed 

offline, and with the strongest features of all its leaf nodes 

arranged in a k-d tree. 

 

5.2.2 Pose tracking. This mode is applied when the poses 

of the two previous target images were successfully 

calculated. This means that some knowledge about previous 

camera poses is available. Assuming linear camera 

dynamics, a prediction of the pose of the current camera 

can be made using an Extended Kalman Filter (EKF) 

(Bishop and Welch, 2001). The target image features may 

then be matched only against the database features that lay 

inside the predicted frustum, resulting in a significant 

simplification of the matching stage. Near and far culling 

planes with distances set to 0m and 50m respectively are 

added to the camera frustum for culling. Note that, for 

additional speed-up, culling is done on the full octree rather 

than directly on all the 3D points. Furthermore, only the 

Sfrustum strongest features of the points in the cells 

intersecting the predicted view are considered for matching 

and organized in a k-d tree. We use Sfrustum = Starget. 

To prevent the system from considering unreasonable 

predictions, we reject any prediction with a change in 

camera orientation larger than δαmax, and the next pose is 

then re-computed in Reset mode. We use δαmax = 0.1 rad (≃ 

5 deg). 

 



Markerless Vision-based Augmented Reality for Urban Planning 7 

5.2.3 Pose resetting. This mode is applied when pose 

tracking has failed, but was successful for one of the last n 

images. Using the location component of the pose of the 

last successfully tracked image, we then cull the full octree 

using a sphere centered at that location and with a radius of 

ρsphere = 50m. Here as well, only the Ssphere strongest features 

of the points located in the sphere are considered for 

matching and organized in a k-d tree. We use Ssphere = 

4Sfrustum. 

 

 

6 ONLINE IMAGE AUGMENTING STAGE 

 

If the system has confidently calculated the pose of the 

camera for a given target image, this image is augmented 

with the projection of the virtual objects. In order for this 

projection to take into account occlusions of the inserted 

virtual objects by the reconstructed 3D scene, the following 

procedure is used (illustrated in Figure 6). Using the 

calculated pose and the target image intrinsic parameters, a 

virtual camera is positioned in the augmented 3D scene, 

which leads to a virtual image. Then, for each pixel in the 

virtual image, if the first intersected object is one of the 

inserted virtual objects, then the color value of the 

corresponding pixel in the real target image is changed to 

the color obtained at the point of intersection. Otherwise 

(i.e. if there is no intersection or the first intersection is the 

reconstructed scene model), the pixel in the real target 

image remains unchanged. 

 

 

7 EXPERIMENTS AND FINDINGS 

 

We now present results of several experiments. The first 

experiment aims at demonstrating the general performance 

of the proposed system. Additional experimental results are 

then shown on two other datasets, including the EPFL scene 

for which the use of a pre-existing coarse 3D CAD model 

proved unsuccessful (see Section 4.1). 

 

7.1 1
st
 experiment 

 

7.1.1 Dataset. In a first experiment, 22 training images 

were taken by a person walking around a residential 

neighborhood. The pictures have a 2048x1536 resolution 

(∼ 3M pixels) (see Figure 7). The processing of the images 

resulted in two files: the list of 3D-referenced SURF 

features; and the reconstructed 3D mesh of the scene, which 

 
Figure 5 Outline of the on-line processing stage, emphasizing the strategies chosen to reduce the search space for 

efficient feature matching. 
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was then augmented with an additional building (see Figure 

8). Later on, a set of target images was acquired using the 

same digital camera and the same resolution (2048x1536). 

In order to simulate a video sequence, the 120 target images 

were acquired in ‘burst mode’. 

 

A second training and target image dataset was then 

created by downsampling all the initial images to a 

resolution of 640x480, and processing them the same way. 

The reason for building these two training and two target 

datasets was to test (1) the impact of image resolution on 

the offline and online stages, as well as (2) the impact of 

resolution differences between the training and target 

images. 

(a)   (b) 

(c)   (d) 

Figure 6 The process to augment a target image: (a) Target image; (b) Virtual image obtained from the estimated pose 

and the target image’s internal parameters; (c) Texture to be superimposed (overlaid) on the target image; (d) Augmented 

target image. 

 
Figure 7 Experiment 1: Four of the 22 training images used to reconstruct the database of 3D-registered SURF features 

and the dense 3D model of the scene. 
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7.1.2 Results. Figure 9 shows the results obtained for 

some of the input target images. The results shown are for 

the training and target images all having a resolution of 

2048x1536. Remember that any error in the pose estimation 

should lead to gross errors in the augmented images, that 

would be particularly obvious in the case of occlusions. 

With this in mind, a visual analysis of the results shows that 

all poses were successfully calculated. 

It should be noted that in this experiment, at four 

occasions when a target image was processed in tracking 

mode, a sharp acceleration in the camera orientation 

occurred and the EKF prediction resulted in a change of 

camera orientation slightly larger than δαmax – the reason for 

these large orientation changes between consecutive images 

is the low-frequency of the experienced data acquisition (∼ 

1 fps). This resulted in the estimated pose being rejected by 

the system and recalculated in reset mode. In all cases, this 

recalculation was successful. So, the system seems to 

achieve accurate pose estimations and effectively recover 

from tracking failures. 

 
Figure 8 Experiment 1: Augmented 3D scene. 

 
Figure 9 Experiment 1: 6 of the 120 target image stream before (lines 1 and 3)  

and after being augmented (lines 2 and 4). 
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Tables 1, 2, 3 present quantitative results on the pose 

estimation performance. The three tables report results for 

experiments conducted with and without two options: 

 Multiple Matching (MM): a target image feature can 

be matched with several database (DB) feature 

descriptors. Such strategy may be considered due to 

the possible presence of numerous self-similarities in 

the scene (in terms of geometry and texture), which 

could result in false yet strong matches that could in 

turn yield false yet well-supported camera pose 

estimations. 

 Guided Refinement (GR): the guided refinement stage 

described in Section 5 aims at increasing the number 

of matches, so that the correct pose is more likely to 

be recovered. This guided refinement is however not 

mandatory and can be disabled. 

Table 1 reports the average numbers of features used for 

matching and the average numbers of matches obtained for 

the three possible modes. Table 2 reports the success rate in 

pose calculation. Both the software success rate (i.e. when 

the software found a sufficient number of geometrically 

consistent matches) and the visual success rate (i.e. human 

control on whether the estimated pose is correct) are 

reported. Finally, Table 3 reports the average processing 

times obtained for the different modes. 

The analysis of these results shows that, as expected, 

MM and GR tend to improve the number of (good) 

matches. However, in this experiment at least, the 

improvement is not critical, since it does not significantly 

Table 1 

Experiment 1: Statistics of the pose calculation performance for the three possible modes: Initialization, Tracking and 

Reset. The columns Matching and GR report the results obtained after the initial matching stage and the guided refinement 

stage respectively. The columns DB and Match report the number of map features used for matching and the number of 

matches achieved. 

MM GR 

Initialization Tracking Reset 

Matching GR Matching GR Matching GR 

DB Match DB Match DB Match DB Match DB Match DB Match 

No No 2,675 114 N/A 1,500 72 N/A 6,000 85 N/A 

No Yes 2,675 114 1,500 232 1,500 72 1,500 156 6,000 85 1,500 170 

Yes No 2,675 119 N/A 1,500 88 N/A  6,000 88 N/A 

Yes Yes 2,675 119 1,500 286 1,500 88 1,500 217 6,000 88 1,500 214 

 

 

Table 2 

Experiment 1: Statistics of the pose calculation performance. 

MM GR 
Software Success Rate Visual Success Rate 

Initial. Tracking Reset Initial. Tracking Reset 

No No 
100% 
(1/1) 

95% 
(118/124) 

100%  
(6/6) 

100% 
(1/1) 

100% 
(124/124) 

100%  
(6/6) 

No Yes 
100% 
(1/1) 

97% 
(120/124) 

100%  
(4/4) 

100% 
(1/1) 

100% 
(124/124) 

100%  
(4/4) 

Yes No 
100% 
(1/1) 

97% 
(120/124) 

100%  
(4/4) 

100% 
(1/1) 

100% 
(124/124) 

100%  
(4/4) 

Yes Yes 
100% 
(1/1) 

98% 
(121/124) 

100%  
(3/3) 

100% 
(1/1) 

100% 
(124/124) 

100%  
(3/3) 

 

 

Table 3 

Experiment 1: Average computation times for pose calculation using training and target images having all 2048x1536 

resolution. 

MM GR 
Mean Processing Time (s) 

Initial. Tracking Reset 

No No 1.34 2.16 1.18 

No Yes 2.00 2.81 1.81 

Yes No 1.37 2.17 1.18 

Yes Yes 1.99 2.81 1.81 
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improve the pose estimation success rates. In addition, the 

use of GR significantly impacts the average processing time 

with an average increase of ∼40%. In any case, Table 3 

indicates that the current implementation of the proposed 

tracking system does not enable processing speeds that 

would support real-time applications (given the current 

parameters and large image resolutions). The issue of 

processing speed is investigated further below. 

Table 4 compares the performance achieved by the 

system for training and target images with different 

resolutions: the original resolution 2048x1536 and the sub-

sampled resolution 640x480. The table shows that the 

system clearly performs best when the training and target 

images have a similar size, which is generally not 

surprising. But, these results also show that small training 

and target images actually achieve similar pose estimation 

performance as large images, with the advantage of faster 

processing times (see Table 5). In the case of different 

training and target image resolutions, the results indicate 

that the scale-invariance property of SURF features can be 

put to the limit if the difference in image resolution is 

significant (given that the two datasets are acquired from 

the same distance to the scene). Nonetheless, one can also 

note that the performance seems better when the training 

images are larger than the target images, than when it is the 

opposite. 

Table 5 presents computational times similarly to those 

in Table 3 but for training and target images with resolution 

640x480. It appears that, although the number of image 

pixels is effectively reduced by a factor of 10, the 

computational efficiency does not improve that 

significantly. This is due to the fact that, although the 

computation of the SURF features for the target image is 

significantly sped up, the parameters Starget, Sfrustum and 

Ssphere remain unchanged, so that the number of matches 

calculated remains fairly constant. 

 

 
Finally, Table 6 presents computational times achieved 

with training and target images with resolution 640x480 

and with Starget = Sfrustum = 500 and Ssphere = 2, 000. It appears 

that the processing times are further, but not that 

significantly, decreased. Note that, for this dataset at least, 

this computational improvement was not achieved at the 

cost of pose estimation quality. A visual analysis of the 

augmented target images showed that the pose estimations 

were all just as good as the ones obtained with higher 

values for Starget, Sfrustum and Ssphere, and images with higher 

resolutions. 

Table 5 

Experiment 1: Average computational times for pose 

calculation using training and target images having all 

resolution 640x480. 

MM GR 
Mean Processing Time (s) 

Initial. Tracking Reset 

No No 0.58 0.75 0.75 

No Yes 1.25 1.22 1.21 

Yes No 0.55 0.57 0.56 

Yes Yes 1.20 1.20 1.20 

 

Table 4 

Experiment 1: Comparison of the pose estimation performance for different combinations of sizes of the training and target 

images. Small (S) images have the size 640x480, and large (L) images have size 2048x1536. The last four lines of this table 

correspond to Table 2. 

Image Size 
MM GR 

Software Success Rate Visual Success Rate 

Training Target Initial. Tracking Reset Initial. Tracking Reset 

S S 

No No 100% 97% 100% 100% 100% 100% 

No Yes 100% 97% 100% 100% 100% 100% 

Yes No 100% 97% 100% 100% 100% 100% 

Yes Yes 100% 96% 100% 100% 100% 100% 

S L 

No No 100% 91% 43% 100% 88% 45% 

No Yes 100% 88% 54% 100% 88% 54% 

Yes No 100% 88% 70% 100% 88% 70% 

Yes Yes 100% 95% 75% 100% 85% 75% 

L S 

No No 100% 98% 100% 100% 98% 100% 

No Yes 100% 95% 100% 100% 99% 100% 

Yes No 100% 94% 100% 100% 94% 88% 

Yes Yes 100% 93% 100% 100% 94% 89% 

L L 

No No 100% 95% 100% 100% 100% 100% 

No Yes 100% 97% 100% 100% 100% 100% 

Yes No 100% 97% 100% 100% 100% 100% 

Yes Yes 100% 98% 100% 100% 100% 100% 

 



Carozza et al. 12 

 
7.2 Further experiments 

Figures 10 and 11 show experimental results obtained for 

two other datasets. The results shown in Figure 10 are 

obtained with the EPFL dataset presented in Section 4 and 

for which tracking with an existing coarse 3D CAD model 

had proven unsuccessful. This scene, which is much less 

structured than the one in the first experiment, is thus more 

challenging — a scene’s structural complexity refers to 

geometric complexity, amount of uniform textures, and 

amount of geometrical/texture repetitions. The system 

nonetheless successfully augmented the subsequently 

acquired target video images. 

Figure 11 shows results illustrating a case when a 

building is planned to be demolished and a new building is 

planned to be constructed. The structural complexity of this 

Edinburgh New Town dataset can be roughly estimated to 

lay between the complexities of the scenes of the first two 

experiments, mainly because it contains buildings with well 

textured façades, but also with numerous self-similarities 

that can impact the performance of the system. 

Overall, all these results demonstrate the localization 

performance and potential of the proposed AR system. 

Table 6 

Experiment 1: Average computational times for pose 

calculation using training and target images having all 

resolution 640x480. Compared to Table 5, the 

following parameter values are changed:  

Starget = Sfrustum = 500 and Ssphere = 4Sfrustum = 2, 000. 

MM GR 
Mean Processing Time (s) 

Initial. Tracking Reset 

No No 0.35 0.26 0.34 

No Yes 0.45 0.39 0.46 

Yes No 0.34 0.28 0.34 

Yes Yes 0.45 0.40 0.47 

 

 
Figure 10 Experiment 2: Six of the processed target images of the EPFL dataset before (lines 1 and 3) and after being 

augmented (lines 2 and 4). 
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8 CONCLUSIONS AND FUTURE WORK 

 

A markerless monocular vision-based augmented reality 

system has been presented, with the aim of providing 

stakeholders of urban developments with a tool enabling 

them to assess planned constructions directly within their 

environment. The system has two stages: In a first offline 

stage a map of the urban scene is constructed comprising a 

database of 3D-referenced SURF features and a dense mesh 

reconstruction. The latter is used offline to augment the 

scene with the virtual objects, and online to calculate 

occlusions of those virtual objects by the existing 

environment. In the second, online stage, target stream 

images are processed. For each target image, the camera 

pose is computed through SURF matching and a robust 

pose estimation procedure combining 3-point, RANSAC, 

and Levenberg-Marquardt non-linear optimization 

algorithms. 

The performance of the system was successfully 

demonstrated on real imagery from three different scenes. 

Nonetheless, improvements could be made in several areas: 

 The system in its current implementation only 

achieves up to 3fps which is not fast enough to 

consider a real-time AR system. While some 

 
Figure 11 Experiment 3: Six of the processed target images of the Edinburgh New Town dataset before (lines 1 and 3) 

and after being augmented (lines 2 and 4). 
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improvement could be achieved by varying some 

parameters (e.g. Starget, Sfrustum, Ssphere), transferring 

some data processing to a GPU is also of interest here 

because our feature matching processes (the most 

time-consuming part) are well suited for parallel 

processing. Nonetheless, as shown in this paper, the 

system may already be used in an “offline” manner by 

augmenting a recorded video. 

 Compared to other commonly used approaches, such 

as the one proposed by Woodward et al. (2010), our 

tracking strategy does not rely on tracking image 

features (e.g. using the Kanade-Lucas-Tomasi Feature 

Tracker (KLT) (Shi and Tomasi, 1994)). Instead, it 

tracks the camera. While camera tracking may be 

more robust with respect to sharp changes in camera 

motion (through the Reset mode implemented here), 

the overall tracking is likely not as efficient (database 

culling must be performed and a fairly large amount of 

matching has to be conducted at each iteration). A 

hybrid system could thus be envisaged. 

 Similarly, our system does not rely on beacon-based 

positioning or inertial sensors. While using a single 

source of data (images) makes our system much 

simpler, it could nonetheless benefit from such 

sensory data, especially to support the Initalization or 

Reset modes. 

 Further culling of the database features may also be 

achieved by considering some feature visibility 

criterion, as suggested by Wolf et al. (2005). 

 While the system is designed to handle scenes of the 

size of a urban neighborhood, further testing needs to 

be conducted using larger scenes. 

 Since the focus of this work is on urban augmented 

reality, positioning techniques based on planar 

structures, as suggested by Simon et al. (2000), could 

be investigated. 

In addition, it must be emphasized that there is one 

limitation that is inherent to all vision-based localization 

approaches, which is that they perform adequately only 

when the scene is sufficiently structured. While urban 

environments are generally sufficiently structured (as 

shown in the experiments), other environments can be 

much more challenging (e.g. for some “greenfield” 

developments). 

Finally, an interesting area of further research, that could 

potentially address some of the limitations of the current 

system, is the use of textured GIS level 2 (and 3) urban 3D 

models – e.g. city models encoded in CityGML (Open 

Geospatial Consortium, 2012). There is an increasing 

public and commercial interest for such models, that are 

now being developed around the world. The advantage of 

such models with regard to the proposed system is that 

scenes’ maps of 3D-referenced features could be built by 

extracting features directly from the textured models, which 

would simplify the learning stage. In addition, the models 

could be directly used for calculating occlusions. 
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