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ABSTRACT4

Terrestrial Laser Scanning (TLS) technology is increasingly used for the generation of accurate5

3D models of objects and scenes. But, converting the acquired 3D point cloud data into a repre-6

sentative, semantic 3D model of the scene requires advanced processing and skills. This research7

field is challenging, particularly when considering inhabited, furnished environments that are char-8

acterised by clutter and occlusions. This paper presents a TLS data processing pipeline aimed at9

producing semantic 3D models of furnished office and home interiors. The structure of rooms10

(floor, ceiling, and walls with window and door openings) is created using Boundary Representa-11

tion (B-Rep) models, that not only encode the geometry of those elements, but also their connec-12

tivity. Windows and doors are recognized and modelled using a novel method based on molding13

detection. For the furniture, the approach uniquely integrates smart technology (RFID) that is in-14

creasingly used for Facilities Management (FM). RFID tags attached to furniture as sensed at the15

same time as laser scanning is conducted. The collected IDs are used to retrieve discriminatory16

geometric information about those objects from the building’s FM database, that this information17

is used to support their recognition and modeling in the point cloud data. The manuscript partic-18

ularly reports results for the recognition and modeling of chairs, tables and wardrobes (and other19

similar objects like chest of drawers). Extended experimentation of the method has been carried20

out in real scenarios yielding encouraging results.21

Keywords: 3D laser scanner, 3D data processing, RFID, B-Rep model, Building Information22

Modeling23

INTRODUCTION24

Terrestrial Laser Scanning (TLS) technology is increasingly used for the generation of accu-25

rate 3D models of objects and scenes. While the technology has application in numerous fields26

such as cultural heritage or forensics, this article focuses on its application in the Architecture,27

Engineering, Construction and Facilities Management (AEC/FM) industry. In the AEC/FM sector,28

a particular area of interest for the application of such systems is the synthesis of 3D Building29

Information Modeling (BIM) models of buildings, facilities or infrastructure.30

The wide majority of systems reported to date, academic research or commercial software,31

focuses on the modeling of building or room structural components, with far fewer works tackling32

the automatic generation of 3D (BIM) models for furnished (i.e. inhabited) rooms, houses and33

buildings. Yet, there are applications that require 3D models of interiors that contain not just34
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their structure (floor, ceiling and walls, with openings like doors and windows), but also their35

furniture, and possibly even other smaller objects. These particularly include applications based on36

robot navigation and robot interaction with the environment (grasping, pushing, moving) (Srinivasa37

et al. 2008). One such field of application, for which interest is currently growing rapidly, is the38

use of robots for supporting elderly or handicap people in their homes (Mast et al. 2012). Other39

applications include: conducting security inspections; conducting inventories (Ehrenberg et al.40

2007); or situations when there is the presence of hazards for humans, for example when navigating41

buildings after earthquakes (Wandel et al. 2003; Marques et al. 2002; Ishida et al. 2004).42

The complete 3D reconstruction of interior scenes from point cloud data, that is the reconstruc-43

tion of 3D models where the structure and furniture are both precisely modeled, is a complex task44

at two levels:45

• Furniture creates clutter and occlusion that challenge algorithms for recognizing and mod-46

eling the structure of rooms.47

• Furniture can have a wide range of shape and is movable, meaning that little prior informa-48

tion can be used regarding their potential location in the room.49

Accordingly, this paper presents a unique system for the automatic generation of 3D mod-50

els of inhabited interiors, by means of TLS and Radio-Frequency IDentification (RFID) technol-51

ogy. The use of RFID technology is motivated by the fact that it is increasingly used for appli-52

cation in Facilities Managements (FM) where objects (especially mobile ones like furniture) are53

tagged for simplifying their identification — see (Lu et al. 2011) for a broad review of applica-54

tions of RFID in this field. Furthermore, recent BIM developments such as the NBS National BIM55

Library http://www.nationalbimlibrary.com/ (see also the Polantis Ikea 3D model56

database at http://www.polantis.com/ikea) will inevitably lead to FM databases con-57

taining detailed 3D models of all objects, including furniture, contained in buildings.58

Figure 1 illustrates an example of scenes dealt with in this paper, with the point cloud acquired59

by the scanner and the final 3D interior model produced by our system.60

The rest of the article is organized as follows. Some of the most significant and relevant works61

in the field of modeling from 3D point clouds are reviewed in Sections Modeling from 3D point62

clouds and TLS and RFID integration: motivation and contribution, with particular focus on ap-63

plications in the AEC/FM sector. Our proposed approach is then described in Section Method.64

Section Experimental Results presents experimental results demonstrating its performance. Fi-65

nally, Section Conclusions presents the conclusions and future works.66

MODELING FROM 3D POINT CLOUDS67

Dense raw data provided by laser scanners are typically processed manually or semi-automati-68

cally by engineers to create 3D models. These models range from mesh and CAD models in which69

components are considered as individual geometric elements, are not explicitly classified and do70

not include connectivity information, to BIM models in which the objects have all this information,71

and possibly more (e.g. material, energy performance).72

In the last few years, commercial solutions have emerged that enable the creation of 3D mod-73

els, a process now commonly called as-is modelling. A basic solution is for example provided74

by Matterport (http://matterport.com/) that uses proprietary 3D cameras to create 3D75

point clouds and meshes of indoor environments. This solution however does not tackle the au-76

tomatic recognition and/or segmentation of the different scanned components for the creation of77
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FIG. 1. Point cloud and the produced 3D model.

semantically-rich models. More advanced software solutions are also available for the modelling78

of 3D CAD/BIM models from TLS point clouds. For example, ClearEdge3DTM (http://www.79

clearedge3d.com/) commercializes the EdgeWise BuildingTM software package that features80

functionalities for (semi-) automatically extracting structural components like walls, windows,81

doors from TLS point clouds and exporting them in a BIM model format. This can be consid-82

ered an example of the current state-of-the-art commercial solutions for structural modelling of83

interiors. Yet, the software does not consider the modelling of furniture, and in fact may require84

that rooms be as empty as possible when scanned so that point clouds are acquired from the entire85

surface of the structural components.86

From a research viewpoint, different approaches dealing with the creation of realistic non-87

parametric models have been proposed over the last decades. Some of these focus on outdoor88

environments, others on interiors.89

As regards the modeling of building exteriors, Frueh et al. (2005) and Bohm (2008) present90

different algorithms for reconstructing façades from 3D laser scanned data and images. Remondino91

et al. (2009) propose a combination of measurement techniques for the virtual reconstruction of92

complex architectures. In (Pu and Vosselman 2009), a region-growing algorithm is proposed that93

aims to segment windows, doors and roofs in outdoor façades with overall flat surfaces. More94

recently, Wang et al. (2015) have proposed a method for extracting structural geometries (such as95

roofs, walls, doors and windows) from unorganized point clouds.96

Interior environments are delimited by structural, immobile components, such as floors, ceil-97

ings and walls with windows and doors, that enclose the environment and provide the boundaries98

of the scene. Typical inhabited interior environments also contain other objects, particularly fur-99

niture. The difficulty regarding the reconstruction of such environments arises from the presence100

of that furniture (and other objects) that can have various shapes, creates disorder, occludes the101

walls and other components during scanning. Many researchers have focused their attention on the102
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recognition and modelling of particular parts of the building structure of interior spaces, such as103

walls, columns, and doors, as well as specific furniture. El-Hakim et al. (1997) present a mobile104

mapping system to generate 3D models of indoor environments using a combination of location105

tracking and 2D range imaging devices. Stamos and Allen (2000) present an approach to generate106

large planar areas with primitives and non-planar areas with dense mesh elements. Plane sweep107

approaches have also been widely investigated to find planar regions and define the walls in a point108

cloud of a room (Hahnel et al. 2003; Budroni and Bohm 2005). Kwon et al. (2004) recognize differ-109

ent objects by automatically fitting elementary geometric shapes (cuboids, cylinders and spheres)110

to point clouds. Okorn et al. (2010) present an automatic method to generate precise 2D plans for111

indoors and Adán and Huber (2011) propose a solution based on region labelling to reconstruct112

interior boundaries. Valero et al. (2012b) present a method that automatically yields Boundary113

Representation (B-Rep) models of the structure of interiors (floor, ceiling and walls) from dense114

TLS point clouds. Interestingly, the B-Rep representation enables the modeling of not only the115

surface geometry of each objects, but also their connectivity. Recently, Dimitrov and Golparvar-116

Fard (2015) presented a robust algorithm for segmenting point cloud into smooth surfaces. While117

the work does not address the actual recognition and modelling of building components, the seg-118

mented surfaces would provide a valuable basis for it. Ali et al. (2008) identify windows by means119

of boundary analysis in binary images and texture information.120

In relation to the specific problem of 3D reconstruction from partial data due to occlusions,121

Dell Acqua and Fisher (2002) present a method to reconstruct planar surfaces located behind ob-122

jects which occlude them. Xiong et al. (2013) detect and model the main structural components of123

an indoor environment (floors, ceilings, and walls) including windows and doorways despite the124

presence of significant clutter and occlusion.125

Other approaches relate to our work by their consideration for prior knowledge about the anal-126

ysed scanned scene. For example, Bosché (2010), Anil et al. (2013) and Kim et al. (2013) identify127

components in built environments using the valuable information contained in existing (e.g. as-128

designed) 3D models.129

The rapid development of inexpensive solutions to generate 3D point clouds, such as RGB-130

D cameras, has encouraged many researchers, mainly in the field of computer vision, to employ131

these devices to capture and rapidly understand and model indoor environments. For example,132

Guo and Hoiem (2013) tackle the identification of horizontal and planar surfaces that can support133

objects and people (such as chairs, beds and tables) from single RGB-D images. Silberman et al.134

(2012) present an algorithm to segment RGB-D data into surfaces and object regions and infer135

their structural and ‘support’ topology. Jia et al. (2013) segment different small objects, such as136

books or boxes, in indoor scenes but these are simply modelled as cuboids. And finally, in (Xiao137

et al. 2013), an object labelling tool for inhabited interiors is presented.138

However, we note that, while all these approaches manage to recognize and model the main139

structural elements of rooms (floor, ceiling and walls), they only provide coarse segmentations of140

the ‘foreground’ objects typically into basic classes such as ‘furniture’ and ‘clutter’. They do not141

address the problem of precisely recognizing and modeling individual pieces of furniture.142

It is interesting to note that very little work has been published on the detection and modelling143

of furniture. Looking at all the approaches reviewed above, none of them considers the precise144

recognition and modeling of furniture beyond the coarse labelling of data regions as ‘furniture’ or145
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‘clutter’. Relevant works in this area include that of Rusu et al. (2008) who identify pieces of furni-146

ture and utensils in point clouds of a corner of a kitchen. Wang and Oliveira (2002) take advantage147

of the symmetry of certain objects to reconstruct them when they are affected by occlusion. And148

Castellani et al. (2002) work on the reconstruction of corners and edges of furniture that is partially149

occluded.150

TLS AND RFID INTEGRATION: MOTIVATION AND CONTRIBUTION151

From the literature reviewed above, it appears that none of the existing works on as-is mod-152

eling provides a complete solution for the reconstruction of semantically-rich models of interiors153

where both structural elements and furniture are precisely modelled. Indeed, while many of the154

approaches above are able to reconstruct the structure of interiors with detailed classification of the155

segmented regions (e.g. surfaces classified as walls, floor and ceiling), they generally only provide156

a coarse segmentation and classification of the rest of the interior objects (e.g. object classified as157

‘furniture’ or ‘clutter’ without more precision).158

In contrast, we present a novel approach that achieves the reconstruction of semantic 3D models159

of inhabited, furnished interiors where both the structure and furniture are accurately and precisely160

segmented, classified and modelled in TLS point cloud data. The approach is geared towards the161

specific context where furniture is tagged with RFID tags that link each piece of furniture to addi-162

tional relevant information stored in a Facilities Management (FM) database. While such context163

is arguably simpler, we have shown that it is also increasingly common to use smart technologies,164

like RFID technology, in construction and FM (Jaselskis et al. 1995; Lu et al. 2011).165

While RFID technology has been widely discussed in the literature and is already used in in-166

dustry for various applications, few papers relate RFID technology to 3D scene reconstruction167

and understanding. El-Omari and Moselhi (2011) have proposed to integrate RFID and TLS tech-168

nologies to track the state of materials on jobsites, but they consider the two technologies at two169

different stages in the construction supply chain; RFID is not used to detect objects within TLS170

data. In contrast, the work of Cerrada et al. (2009) is more relevant as they use the information171

stored in smart tags to improve the performance of object recognition in laser scanned data. How-172

ever, they deal with small scenarios with geometrical shapes laid on a table. It is also worth noting173

the work of Ehrenberg et al. (2007) who developed a mobile robot that conducts library inventory,174

where the robot is equipped with an RFID reader to identify the books present on the shelves.175

In contrast, we focus on the 3D reconstruction of large building interiors, a problem for which176

the above-mentioned integration has not been considered to date. In a previous publication, we177

have ourselves dealt with the creation of 3D models of interiors using RFID. In (Valero et al.178

2012a), TLS and RFID technology are combined to obtain simple 3D models of inhabited interiors.179

Beside the building’s structure, furniture is also recognized to generate simple semantic 3D models180

of interiors. However, that work did not consider other structural elements, such as interior ‘free’181

columns, nor did it consider the recognition and modeling of wall openings such as doors and182

windows. For the identification and modeling of furniture, the algorithms behind the results in183

(Valero et al. 2012a) were not presented in detail and their performance was also not assessed in184

detail.185

In this paper, that earlier work is extended in many ways:186

• Modelling of walls: An improved algorithm is proposed that models wall planes more187

accurately.188
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• Detection and Modelling of wall openings: B-Rep models of interiors are completed with189

wall openings, such as windows and doorways, as well as interior ‘free’ columns. In par-190

ticular, a novel algorithm is presented for the recognition of openings based on a molding191

detection.192

• Identification and modeling of furniture: The algorithms that calculate the pose of furniture193

in the point cloud are improved and detailed.194

• Experimental validation: Experimentation is extended to larger environments, and new195

assessment procedures are included that further demonstrate the strengths of the method.196

METHOD197

Overview198

The flowchart of Figure 2 summarizes the strategy to create a 3D model of the scene. The199

elements that compose an inhabited interior are divided into two groups:200

• (Immobile) Structural elements, that include the ceiling, floor, walls and columns, along201

with the main openings within the walls (windows and doors).202

• (Mobile) Furniture, that include tables, chairs, and wardrobe-like objects.203

First of all, it is assumed that 3D data acquisition and pre-processing (i.e. filtering and reg-204

istration of multiple point clouds) have been carried out, leading to the point cloud labelled D1205

in Figure 2. Then, a sequential processing is applied where, at each consecutive stage, one206

type of element is automatically recognized (point set Si), modelled and removed from the point207

cloud (Di+1 = Di − Si). This sequential strategy starts with structural elements — successively208

floor/ceiling, walls, columns, doors and windows — and then moves on to furniture — succes-209

sively tables, chairs, wardrobes, and wastepaper baskets. Structural elements are detected using210

the 3D TLS data only, and the room’s structure is modelled using a B-Rep representation that cap-211

tures not only the geometry of the individual structural elements, but also their connectivity. Then,212

furniture is identified in the room by means of RFID tags attached to them and sensed by a reader213

mounted alongside the laser scanner. The IDs enable the retrieval from the building’s FM database214

of relevant geometric information for the identified pieces of furniture (including their 3D models)215

that are used to accurately recognize and precisely model them in the TLS point cloud.216

All these stages are detailed in the following sub-sections.217

Modeling of room structure218

In order to detect and model the structural elements from the point cloud data, the 3D space is219

first discretized in a uniform 3D voxel grid. This voxelization has two purposes: reduce computa-220

tional complexity, and act as a noise filter. Then, the approach conducts the following successive221

steps:222

1. Detect and model the data planes that contain the 3D points belonging to the boundary of223

the scene (i.e. floor, ceiling and walls).224

2. Detect and model the data corresponding to interior ‘free’ columns225

3. Detect and model openings in the wall corresponding to doors and windows.226

4. Generate a complete semantic 3D model of the room’s structure.227
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FIG. 2. Overview of the proposed data processing pipeline.
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A detailed presentation of the overall approach to model the room structural boundary elements228

(ceiling, floor and walls) can be found in (Valero et al. 2012b). However, note that an improved229

method for modelling the walls is reported here. Also, steps 2 and 3 above constitute new contri-230

butions to the overall room structure modeling approach.231

The processing steps above are presented in the following sub-sections. To support the presen-232

tation, an illustrative example, corresponding to a real case study, is used. Figure 3 shows a photo233

and the initial point cloud (D1) of this illustrative interior room.234

(a) Photo of the room. (b) Initial TLS point cloud of the room.

FIG. 3. Example furnished interior used to illustrate the room structural modelling
approach.

Floor and ceiling segmentation235

Formally, the uniform voxel space can be defined in a universal coordinate system (UCS) by236

means of the voxel size ε and the 3D coordinates of each voxel’s center (vx, vy, vz). The voxel237

space’s origin and voxel size are initially considered unknown and are collectively calculated with238

the detection of the floor and ceiling data planes.239

The goal is then to produce a voxelization of the space that leads to most of the points belonging240

to the floor and ceiling being contained in thin parallelepipeds Mf and Mc of height ε (see Figure241

4(a)). An integrated algorithm has been developed that automatically achieves this optimization;242

See (Valero et al. 2012a) for details. Figure 4(b) shows floor and ceiling segmentation results for243

the illustrative case. Note that this method assumes that the floor and ceiling are both horizontal;244

by far the common situation.245

Wall segmentation246

In rectangular indoor plans, the walls could be detected by adapting the process above to two247

pairs of parallel voxels planes. Instead, we consider the more complex case of the extraction of248

walls in arbitrary plans in which walls are designed to be straight, but not necessarily perpendicular249

or parallel to one another.250

As illustrated in Figure 5, we propose to carry out the wall detection in a ‘top view’ 2D binary251

image, I , obtained by orthogonal projection of the entire initial 3D point cloud data (D1) on a252

horizontal plane (Figure 5(a)). Pixels of I are labeled occupied (1) or empty (0) depending on253

whether TLS points fall within them (Figure 5(b)). I is used to detect the room boundary (walls)254

(Figure 5(c)). Then, a Hough Transform algorithm is applied to the dilated room boundary binary255

image to detect initial approximate locations and extents of the walls (Figure 5(d)). For each256
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(a) Illustration of the process employed to simultane-
ously define the space voxelisation and segment the floor
and ceiling points from the initial room point cloud.

(b) Results of the floor and ceiling segmentation.

FIG. 4. Illustration of the floor and ceiling segmentation process.

of the walls, a RANSAC (Fischler and Bolles 1981) -based algorithm is then used to calculate257

the plane equation that optimally fits the data while discarding outlier points (e.g. from objects258

positioned against the wall). For each iteration, three points are randomly selected to calculate a259

plane equation and the plane support is calculated as the number of remaining points that satisfy a260

distance-to-plane threshold (e.g. according to DIN 18202 (Deutsches Institut fur Normung 2005))261

and whose normal vector does not differ from that of the hypothesized wall plane by more than262

15◦. The plane leading to the largest support after 1,000 iterations is considered the best plane.263

Figure 5(e) shows the resulting segmentation of points belonging to the walls for the illustrative264

case.265

Room boundary B-Rep model266

The floor, ceiling and wall detection and segmentation stages produce the planes corresponding267

to each one of those elements. The following step consists in converting this information into a268

unified surface representation. Among possible 3D representations, the B-Rep model (Mortenson269

1985) has been chosen. In B-Rep, a shape is described by a set of surface elements along with270

connectivity information describing the topological relationships between the elements.271

The floor, ceiling and wall plane equations directly correspond to surfaces in the B-Rep repre-272

sentation. Given the expected topological relationships between the different elements (each wall273

intersects the floor and the ceiling; the intersecting walls are known from the process defined in the274

previous section), the relevant intersections between planes are defined, yielding the faces, edges275

and point topological entities in the B-Rep. Figure 6 illustrates the B-Rep model obtained for the276

illustrative case.277

Modeling of interior columns278

Sets of points which precisely fit to vertical cylinders or parallelepipeds that span the entire279

height of the room are recognized as interior ‘free’ columns. This is achieved with the process280

detailed below and illustrated in Figure 7.281

Once the points belonging to walls, ceiling and floor are removed from the original 3D point282

cloud, the points corresponding to the top part of the room are extracted. This area, colored in blue283
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(a) Top view of the initial point cloud (D1). (b) Binary image generated after discretization.

(c) Detected contour (delated). (d) Walls and their intersections recovered by the Hough
transform and plane intersection stages.

(e) 3D points matched to the detected walls.

FIG. 5. Illustration of the wall segmentation process.
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FIG. 6. Reconstructed B-rep of the room structure (boundary elements only) from
the segmentation results reported in Figures 4(b) and 5(e).

in Figure 7(a), is expected not to include other large components but the searched columns. A top284

view of that point cloud slice is converted into a binary image (see Figure 7(b)) and the connected285

segments whose bounding boxes are large enough are considered as potential ‘free’ columns.286

For each of those segments, a least-square-error technique is used to fit circles (Kasa 1976)287

and rectangles (Chaudhuri and Samal 2007) to it. If the fitting is good, the column is considered288

recognized and is modelled by extruding the detected cross-sections from the floor up to the ceiling289

of the room (Figure 7(c)).290

Modeling of wall openings291

A novel approach is proposed to detect and model significant rectangular wall openings such292

as doorways and windows. The approach, illustrated in Figure 8, is based on the detection of293

moldings around empty areas (without 3D points) within wall planes.294

For each wall plane, the first step consists in generating a 2D binary image Iwall discretizing the295

point cloud data. Each pixel in Iwall is labeled occupied or empty, depending on whether at least296

one 3D point falls within it (green pixels in Figure 8(a)). This yields the detection of the boundary297

of empty regions (Figure 8(b)) that may correspond to openings (empty regions can also be the298

result of occlusions).299

Next, for each empty region an opening molding is searched by detecting a specific 3D point300

pattern which is maintained for a set of thin and continuous vertical and horizontal slices along its301

boundary. Let’s assume that a segment Pi which borderlines an empty area of the wall maintains302

the signature f1 (see Figure 9). Since f1 is not a constant function, the segment Pi is a candi-303

date to be a molding location. Candidate molding locations are searched all along the boundary304

of the opening, classified through a signature matching process detailed in (Valero et al. 2011),305

and grouped into vertical and horizontal molding segments (see blue and red lines in Figure 8(c)).306

Finally, doors and windows are detected by means of a region-growing algorithm that finds empty307

regions bounded by horizontal and vertical molding segments, as shown in Figure 8(d). The region-308

growing algorithm has two steps. First, a horizontal line sweep detects empty regions bounded by309

horizontal molding segments. Then, these initial regions are expanded horizontally to vertical310

molding segments. Regions bounded by an upper and lower segment are classified as windows.311

Regions that extend to the floor are classified as doors. Each cluster determines the size of the312
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(a) Point cloud D3 with the extracted top part in blue. (b) Segment candidates of column
cross-sections.

(c) 3D model of the recognized columns.

FIG. 7. Illustration of the process for detecting interior ‘free’ columns.

opening and its position in the wall plane. Note that the process assumes that openings are rect-313

angular and all their sides (three for a door, and four for a window) are at least partially captured314

during scanning so that molding segments can be detected.315

Although this method focuses on the case of openings with moldings, it can also be employed316

in the case of openings which do not have a molding but are recessed. In such case, the signature317

simply consists of a step function (see Figure 10).318

Final B-Rep model319

The detected ‘free’ columns and openings are easily added to the initial room boundary B-Rep320

model (Figure 6) using planar surfaces and lines, as well as topological information (faces, edges321

and points). Figure 11 shows the final B-Rep model obtained for the illustrative interior space.322

Modeling of furniture323

The furniture in the scene is identified, recognized and positioned with the help of RFID tags at-324

tached on them, as well as relevant geometric information contained in the building’s FM database.325

An RFID reader mounted alongside with the scanner acquires the object IDs stored in the tags dur-326

ing the scanning process. Each ID has a corresponding entry in the FM information database that327

provides relevant relevant geometric information about the given object. We particularly store for328

each object:329
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(a) Marked empty areas in a wall plane

(b) Boundaries of empty areas of a wall and extracted 3D
data for one of them.

(c) Detection of horizontal and vertical moldings. The ver-
tical moldings are shown in red and horizontal moldings, in
blue.

(d) Final detections and modeling of the openings. The
figure illustrates three windows and one door correctly de-
tected, and one wrongly detected ‘door’-like opening.

FIG. 8. Illustration of the opening detection process.
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FIG. 9. Function fitting the projected data of a molding.

FIG. 10. Opening without a molding. In such case, the recess profile (shown in
blue) can be used with our window detector.

FIG. 11. Final B-Rep model with columns and openings.
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• Discriminatory geometric information, used to uniquely recognize/locate this object in the330

point cloud data; and331

• 3D model (mesh), used to accurately position the object in the point cloud data, and subse-332

quently for visualization.333

The following sub-sections present the methods developed to recognize and determine the pose of334

the following types of furniture: tables, chairs, wardrobes (and the like), and paper baskets. Note335

that all these elements are assumed to be in contact with the floor in a stable position.336

Tables337

The discriminatory geometric information used to recognize a table in the point cloud data338

includes: the length, width and height of the tabletop.339

The recognition process, illustrated in Figure 12, goes as follows. A horizontal slice of the340

current 3D point cloud (D4) is first extracted at the table height, and a binary image It is generated341

by projecting the points contained in that slide orthogonally onto a horizontal plane, and labelling342

the pixels of It as occupied (by points) or empty. Compact regions in the image are filtered by343

calculating the normal vectors of the points by means of an algorithm based on the scatter matrix344

(Shi et al. 1994) – see Figure 12(d) how the boundary of the tabletop is clearly distinguished. Then,345

the lengths of the two main orthogonal directions of the compact regions are used as recognition346

criterion. The main directions also enable the initial approximate positioning of the table’s 3D347

model (from the FM database) in the scene. This position is subsequently optimized by finely348

fitting the 3D model to the complete point cloud by means of an Iteration Closest Point (ICP)349

algorithm (Rusinkiewicz and Levoy 2001).350

Chairs351

The discriminatory geometric information used to recognize a chair in the point cloud data is:352

the leg pattern to be searched at a specified height above the floor.353

The recognition process starts with the extraction of a slice of the point cloud around the spec-354

ified height above the floor, and the generation of a binary image Ic from the points contained355

in that slide projected on a horizontal plane. The goal of the subsequent image processing is to356

recognize the leg pattern, i.e. signature, of the given chair in the image. We distinguish discrete357

from continuous leg patterns. Discrete patterns consist of sets of spots disposed at the vertices of358

regular polygons (see example in Figure 13(a)), and continuous patterns are continuous patches359

usually with a star shape (see example in Figure 14(a)).360

In the case of discrete patterns (Figure 13), since the projections of the legs are discrete, each361

being only a few centimeters wide, only small and compact segments are considered as potential362

legs, and their patterns studied. For each possible leg, its distance to the other ones is calculated,363

and the pattern of these distances is checked against the expected one. For a chair having n legs,364

any set of n potential legs obeying the chair distance pattern conditions simultaneously is selected365

as candidate for the considered chair.366

In this case of continuous patterns (Figure 14), a shape matching process is executed by cross-367

correlating the leg pattern (calculated beforehand from the chair’s 3D model) with image Ic. To368

address the fact that the orientation of the chair leg pattern in the room is unknown, this process369

is conducted 360
2n

times with 2◦ incremental rotations of the pattern between two consecutive cross-370

correlation operations.371
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(a) 3D points inside the slice defined around the ex-
pected tabletop height.

(b) Binary image It.

(c) Extracted segment. (d) Normal vectors for the detected segment.

(e) Recognized tabletop (in green) from
the segment 3D points (in red).

(f) Final positioning of the table (red) in
the entire point cloud.

FIG. 12. Illustration of the process to recognize and model a table.
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(a) Example of a discrete pattern. (b) Slice of points close to the floor.

(c) Binary image Ic. (d) Detection of the discrete pattern (multiple
detections).

(e) 3D chair model accurately posi-
tioned in the scene.

FIG. 13. Illustration of the process for detecting and modeling a chair with a dis-
crete leg pattern.

In both the discrete and continuous cases, the detection stage yields an initial pose of the chair372

that is refined by using an ICP algorithm to fit the 3D model of the chair to the 3D point cloud data373

of the scene. To address issues surrounding symmetries in the chair leg layout, the ICP algorithm374

is also initialized n times.375

Wardrobe-like furniture376

Wardrobe-like furniture, like wardrobes, filing cabinets, or chest of drawers, are hypothesized377

to be shaped as parallelepipeds. As a result, the discriminatory geometric information used to378

recognize a wardrobe-like piece of furniture in the point cloud data is: the width, depth and height379

of the parallelepiped.380
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(a) Example of a chair with a con-
tinuous leg pattern.

(b) Binary pattern obtained
from the chair’s 3D model and
used for the cross-correlation
step.

(c) Binary image of the top view of
the point cloud slices (Ic).

(d) Detection of the continuous pat-
tern.

FIG. 14. Illustration of the process for detecting and modeling a chair with a con-
tinuous leg pattern.

As illustrated in Figure 15, the recognition algorithm is based on processing an image which381

is obtained from the subtraction of two point cloud data slices, above and below the specified382

wardrobe height. Two binary images Iw1 and Iw2 are generated from these slices, and the sub-383

traction binary image Iw = Iw1 − Iw2 is processed. The wardrobe is detected in Iw as the white384

segment whose bounding box has the correct width and depth.385

The 3D model of the wardrobe (from the database) is then initially positioned by placing its386

center at the centroid of the point cloud, and aligning the normal vectors of the planes extracted387

from the matched segment to those of the 3D model. Finally, ICP is employed to adjust the388

wardrobe’s position so that it optimally fits the overall point cloud data.389

Paper Baskets390

There exist other kinds of furniture such as wastepaper baskets which can also be easily rec-391

ognized and modelled. Baskets are hypothesized to have a constant cylindrical or rectangular392

cross-section with vertical longitudinal axes. Therefore, the discriminatory geometric information393

used to recognize a wastepaper basket in the data is: its cross-section type and size, and its height.394

The approach to detect and model these objects is similar to the one used for interior structural395

columns, that is the detection of the cross-section in a binary image obtained from a horizontal396

slice of the point cloud data spanning from the floor to the specified basket height. Like for other397

furniture, the initial position yielded by this process is refined using ICP. Figure 16 shows two398

wastepaper baskets recognized and modelled in a scene.399
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(a) Slices above and below the wardrobe height (first row) and respective binary images Iw1
and Iw2

(second row).

(b) Subtraction image Iw. (c) Final position of the wardrobe model super-
imposed to the point cloud.

FIG. 15. Wardrobe-like furniture detection and positioning.

FIG. 16. Example detection and modeling of two wastepaper baskets.
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EXPERIMENTAL RESULTS400

The proposed system has been tested with diverse real inhabited interiors. We first present401

results for what can be considered a ‘simple’ case of a living room. Then, results for a more402

‘complex’ case of an entire high-school floor are reported. Altogether, these results enable a fair403

assessment of the current performance of the system.404

A simple case: A living room405

The approach has first been tested in the context of a living room, for which three different406

furniture configurations have been arranged are scanned. The experimental equipment setup is407

composed of a Faro Photon 80 laser scanner and an OBID LRU 3500 (FEIG) RFID sensor. The408

sensor platform is moved towards commanded positions to perform scans. For each room configu-409

ration, 3D data was acquired from five positions, resulting in a total of eight million points. Figure410

17 presents the plan of the room and Table 1 summarizes the number of tagged furniture in each411

configuration.412

FIG. 17. Plan of the living room.

Room configuration I II III
Tables 3 3 3
Chairs 5 6 5
Wardrobes 2 2 3

TABLE 1. Number of tagged furniture for each of the three room configurations.

Structure413

Once the 3D data are acquired and aligned, and the floor, ceiling and walls are recognized and414

modelled, the precision of the obtained B-Rep models is assessed. The distances between points415

and planes are represented in color maps in Figure 18. Note that regions corresponding to objects416
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like pictures or moldings are clearly visible through significant color variations. For example, two417

paintings and the skirting board, whose width is between 1 and 1.5 cm, can be seen in Wall 7418

(Figure 18(b)). Of course, some of error is also due to walls not being totally flat.419

(a) Wall 1. (b) Wall 7.

(c) Wall 11. (d) Wall 16.

FIG. 18. Error maps obtained after the plane fitting stage, for four representative
walls. The error is simply the distance (cm) of each point to the fitted plane.

The precision of the wall detection and modelling is also assessed with the following four quan-420

titative metrics. The latter three are obtained by comparing the generated B-Rep model to a ground-421

truth model previously built manually using measurements obtained with a Leica DISTOTM A6422

laser distance meter.423

• δ: the plane fitting error, i.e. the mean value of the distances of the matched points to the424

calculated wall plane.425

• α: the plane orientation error, i.e. the horizontal angle between the ground-truth and esti-426

mated normal vectors.427

• dh and dw: the wall height and width errors, i.e. the differences between the ground-truth428

and estimated heights and widths.429

Table 2 summarizes the results obtained for all 16 walls. The values of δ range from 0.2 to 1.6430

cm, demonstrating good modelling precision. Note that values above 1 cm are generally obtained431

for narrow walls only. The values of α do not exceed 1.6◦, with errors above 1◦ typically obtained432

for narrow walls. The values for dh are all 0.80 cm. This is simply due to the fact that dh effectively433

assesses the accuracy in the modelling of the floor and ceiling that are both considered to be flat434
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horizontal surfaces. The values for dw range between 0.1 and 4.5 cm, with errors above 2 cm are435

essentially obtained for narrow walls.436

Altogether, the results are very positive. The accuracy of the modelling is generally high,437

with larger errors only noticed for narrow walls. Wall 16 may first be considered an exception to438

this. But, as shown in Figure 18(d), the presence of a large window over most of its surface and439

the additional significant occlusion from curtains on one of its side do explain the comparatively440

poorer results.441

Wall ID δ [cm] α [◦] dh [cm] dw [cm]
1 0.65 0.23 0.80 0.74
2 1.15 1.83 0.79 0.39
3 0.35 0.32 0.79 0.09
4 0.54 1.42 0.80 0.99
5 0.87 0.21 0.79 0.15
6 1.00 0.06 0.79 1.80
7 0.49 0.87 0.80 0.11
8 1.32 0.02 0.80 2.05
9 0.33 0.12 0.80 0.32
10 1.19 2.33 0.80 1.46
11 0.63 1.21 0.80 2.18
12 1.07 2.04 0.80 1.31
13 0.65 0.54 0.80 1.29
14 0.99 0.53 0.80 2.15
15 0.50 0.42 0.80 1.17
16 1.63 0.20 0.80 4.45
Mean 0.84 0.77 0.80 1.29

TABLE 2. Modelling errors for each room wall. δ is the plane fitting error. α is the
plane orientation error, i.e. the horizontal angle between the measured ground-truth
and estimated normal vectors. dh and dw are the plane dimensional errors (absolute
value), i.e. the differences between measured ground-truth and estimated heights
and widths.

As shown in Figure 19, three openings corresponding to two open doors and one window are442

detected. The figure also shows their estimated sizes and positions. To quantitatively evaluate the443

accuracy of the detection and modeling of these components, three metrics are used:444

• dc: the positioning error, i.e. the distance between the centers of the reconstructed and445

ground-truth models; and446

• dh and dw: the sizing errors, i.e. the differences in the, respectively, height and width of the447

reconstructed and ground-truth models.448

The results, summarized in Table 3, show that the doors fit better than the window. For the window,449

the error is due to curtains that partially occlude it, leading to the fitting of the component to a450
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smaller opening.451

(a) Planar image of the room with the detected and modeled openings. (b) B-Rep model with the de-
tected openings.

FIG. 19. Result of the detection and modelling of openings.

Opening dc [cm] dh [cm] dw [cm]
Door 1 0.78 0 2
Door 2 1.07 0 1

Window 41.76 2 87

TABLE 3. Calculated parameters for the identified openings in the living room.

Furniture452

Figure 20 illustrates the three furniture configurations arranged for the living room, and the re-453

construction results. Different pieces of furniture are identified and positioned in each point cloud.454

Several components such as curtains, a sofa and other small objects are correctly not recognized in455

this process.456

To evaluate the recognition and positioning results, ground truth models for all configurations457

were generated in advance. The 3D model of each piece of furniture is stored in the FM database458

as a regular triangular mesh with a density of 1 vertex per 5mm2. This mesh resolution is selected459

to be similar to the poinr density of the room point cloud, in order to ensure that the ICP-based fine460

positioning algorithm performs appropriately (see section 4). Note that the mesh resolution could461

be adapted automatically to the point density of the point cloud.462

The performance of the recognition and positioning of the furniture is assessed quantitatively463

using the metrics below. The first two are based on the distances between corresponding vertices464

in the mesh models positioned in the ground-truth and recognized and modelled positions:465

• d: the average distance (cm) between corresponding points.466

• P : the percentage of corresponding points that are closer than a threshold distance; we use467

2.5 cm.468
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(a)

(b)

FIG. 20. Furniture recognition and modeling results for the three different config-
urations. Configurations I, II and III are shown in the three successive columns.
a) Planar views of the acquired point cloud data. b) Recognized and positioned
furniture (blue → table; green → wardrobe; red → chair). Regions plotted in grey
correspond to scanned points.

• T = {R, t}: the rigid transformation error, i.e. the transformation matrix T, with rotation469

R and translation t, required to align the reconstructed model to the ground-truth model.470

This error can be decomposed into the rotational error, for example with the Euler angles471

(α, φ, θ) or the quaternion angle µ, and the translation error with the translation vector472

components t = [x, y, z]ᵀ.473

Table 4 summarizes the results for each piece of furniture, and overall. As can be seen, all474

objects are accurately recognized and precisely positioned The values of d are below 1.5 cm and475

P above 85%. Angular errors oscillate between 0 and 1◦, and location (i.e. translation) errors are476

below 2 cm in most cases. The exception of Wardrobe 2 is noticeable (although the error is most477

of the time not that significant). The reason for the poorer results obtained for Wardrobe 2 is that,478

in all configurations, it is positioned in the corner of the room, which results in insufficient data479

being acquired for precise positioning. Also, its width and depth are very similar, which can lead480

to a 90◦ rotation error around the vertical axis, as can be seen in Configuration II.481

The complete 3D models generated for the three configurations are shown in Figure 21. These482

models are created by means of solid modeling software using the calculated B-Rep for the room483

structure, the furniture mesh models and their calculated poses.484

A more complex case: The first floor of a high school485

This sub-section presents the results obtained for the first floor of a high school composed486

of five rooms and one corridor and equipped with typical classroom furniture. The experimental487
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Conf. Obj. d[cm] P [%] α[◦] φ[◦] θ[◦] µ[◦] x[cm] y[cm] z[cm] ‖t‖ [cm]

I

C1 1.28 88.40 0.04 0.25 0.80 0.82 0.80 1.01 0.81 0.87
C2 1.63 80.74 0.50 0.43 0.86 1.08 1.03 0.19 2.99 1.40
C3 1.82 80.10 0.15 0.32 0.52 0.62 0.59 1.61 3.30 1.83
C4 1.69 100 0.38 0.01 0.22 0.44 1.03 0.65 1.35 1.01
C5 1.68 99.47 0.28 0.60 0.22 0.7 0.80 0.50 1.59 0.96
W1 1.83 81.61 0.76 0.86 0.12 1.16 1.02 2.21 2.75 1.99
W2 1.84 53.43 1.78 1.95 2.67 3.78 3.88 5.00 2.18 3.69
T1 0.84 100 0.00 0.00 0.16 0.16 1.11 0.63 0.83 0.86
T2 1.06 99.98 0.06 0.06 0.89 0.9 0.09 0.85 1.71 0.88
T3 0.30 100 0.05 0.00 0.05 0.06 0.17 0.41 0.05 0.21

II

C1 1.58 99.08 0.63 0.49 0.64 1.02 1.00 0.34 1.22 0.85
C2 1.72 99.25 0.69 0.14 1.40 1.56 0.39 1.63 0.96 0.99
C3 0.99 96.13 0.18 0.02 0.90 0.92 0.52 0.41 0.58 0.50
C4 1.73 98.31 0.48 0.56 1.03 1.26 0.96 1.21 1.26 1.14
C5 1.88 92.67 0.34 1.32 0.28 1.38 1.63 1.78 1.52 1.64
C6 1.75 73.4 1.23 0.15 1.15 1.7 0.48 2.89 1.11 1.49
W1 1.67 66.08 0.87 0.87 0.41 1.3 1.57 1.40 4.41 2.46
W2 1.75 51.88 0.04 2.3 105.99 106 8.64 1.17 1.58 3.80
T1 0.93 99.65 0.01 0.01 1.23 1.24 1.15 0.45 1.00 0.87
T2 1.45 86.98 0.02 1.34 0.52 1.44 1.97 2.14 2.06 2.06
T3 0.89 69.55 0.23 0.03 2.03 2.04 2.89 9.54 0.74 4.39

III

C1 1.73 97.16 0.56 0.54 0.79 1.1 0.33 1.80 1.41 1.04
C2 1.54 100 0.13 0.23 0.81 0.86 0.55 0.27 1.21 0.68
C3 1.67 82.95 0.27 0.15 0.03 0.32 1.00 0.11 1.48 0.86
C4 1.84 93.76 0.20 0.83 0.61 1.06 1.86 0.18 1.37 1.14
C5 1.41 83.21 0.16 0.35 0.78 0.88 1.19 1.15 0.82 3.16
W1 1.66 77.61 0.57 0.83 0.03 1 1.14 1.29 3.67 2.03
W2 1.58 71.68 4.61 1.07 0.88 4.82 0.85 0.64 3.87 1.79
W3 1.68 100 0.21 0.10 0.09 0.24 1.74 0.61 1.17 1.17
T1 0.91 100 0.03 0.00 0.37 0.38 1.63 0.36 0.96 0.98
T2 1.22 90.57 0.00 0.08 0.51 0.52 2.64 0.95 1.70 1.76
T3 0.72 87.48 0.06 0.22 0.99 1.02 3.28 0.85 0.44 1.52

Mean 1.45 87.54 0.49 0.50 3.99 4.43 1.50 1.38 1.63 1.56

TABLE 4. Furniture recognition and positioning results for the three configurations
(C → chair, W → wardrobe; T → table). µ is the quaternion angle of the rotational
error.

equipment setup is composed of a mobile robot equipped with a Riegl VZ-400 laser scanner, an488

OBID LRU 3500 (FEIG) RFID sensor, and two computers (see Figure 22). The mobile robot is489

able to move towards commanded positions to perform scans.490

In total, 30 scans were acquired and 6 floors, 6 ceilings, 94 walls, 5 doors, 15 windows, 33491

chairs, 15 tables and 4 wastepaper baskets are recognized and modelled. Figure 23 shows the492

complete point cloud for the floor.493

In order to evaluate the performance of the method, a ground truth model of the scenario and a494
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FIG. 21. 3D furnished models for the three configurations of the studied living
room. Part of the B-Rep has been cropped for visualization purpose.

FIG. 22. Experimental equipment setup on board the mobile robot.

FIG. 23. Point cloud of the first floor of a high school.
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database containing over 200 3D models of pieces of furniture were created. As in the living-room495

example, the evaluation of the performance is carried out considering different quantitative metrics496

assessing the accuracy of the B-Rep model, and furniture recognition and modeling accuracy and497

precision.498

Structure499

The accuracy of the B-Rep model is evaluated using the following metrics that assess perfor-500

mance per room (as opposed to per component):501

• Walls:502

• ᾱ: mean error (per room) in the wall horizontal orientation.503

• d̄h and d̄w: mean error (per room) in the height and width of the walls.504

• Openings505

• d̄c: mean error (per room) in the positioning within the wall plane of the centres of506

the openings.507

• d̄h and d̄w: mean error (per room) in the height and width of the openings.508

Table 5 summarizes the results. Overall, walls are well fitted, with ᾱ well below 2◦ for all rooms.509

Regarding the width of the walls, errors range from 1 cm to 6 cm, with average relative error of510

2.3%. Regarding the height of the walls, errors are extremely small,� 1 cm, which demonstrates511

the precision of the ceiling and floor detection and plane fitting process.512

Table 6 summarizes the recognition and modelling precision for the openings. Although similar513

results are generally obtained for both kinds of openings, a lower precision can be noticed for514

windows. This is due to the presence of blinds that partially occlude the top parts of some windows,515

resulting in the windows’ geometries not being accurately calculated.516

The final B-Rep model containing floors, ceilings, walls and openings for all the rooms is517

shown in Figure 24.518

Room ᾱ [◦] d̄h [cm] d̄w [cm]
I 1.47 <0.01 2.28
II 0.64 0.02 3.78
III 0.54 <0.01 5.05
IV 1.07 0.01 6.03
V 0.10 0 0.86
VI 0.73 0.04 4.94

TABLE 5. Reconstruction performance for the walls, ceilings and floors. ᾱ is the
mean error in the walls’ horizontal orientations; d̄h and d̄w are the mean errors in
the heights and widths of the walls.

Furniture519

The performance of the recognition and positioning of furniture is assessed per room using the520

following quantitative metrics, relating to those used earlier:521

• d̄, the mean of the d values obtained for all furniture contained within the given room.522

• P̄ , the mean of the P values obtained for all furniture contained within the given room.523
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Opening d̄c [cm] d̄h [cm] d̄w [cm]
Doors 3.14 0.8 4.92

Windows 3.75 4.98 4.08

TABLE 6. Reconstruction performance for doors and windows (openings).

FIG. 24. B-Rep model obtained (red→ doors; blue→ windows).

• µ̄: the mean of the quaternion angular errors obtained for all furniture contained within the524

given room.525

• ¯‖t‖: the mean of the position error obtained for all furniture contained within the given526

room.527

Table 7 summarizes the results obtained by the proposed approach. All P̄ values are again528

higher than 70% and d̄ values are below 2 cm, which indicates that all objects have been correctly529

recognized. Accordingly, low values are accordingly reported for the positioning of the furniture,530

with µ̄ below 3◦ and t̄ below 2 cm in most cases.531

Room d̄ [cm] P̄ [%] µ̄[◦] ¯‖t‖ [cm]
I 1.91 78.7 2.87 3.43
II 1.81 78.3 2.56 1.95
III 1.86 78.7 2.82 1.73
IV 1.94 72.8 2.40 1.77
V 1.58 90.9 2.34 1.74
VI n/a n/a n/a n/a

TABLE 7. Performance of the recognition and positioning of the furniture. d̄ and P̄
are the averages of the d and P values obtained for all furniture contained within
each room. µ̄ and t̄ are the means of the orientation and position errors obtained
for all furniture contained within the given room. Room VI did not contain any
furniture.

Figure 25 shows the complete 3D models (structure + furniture) reconstructed for the rooms II532

and IV of the high school floor.533
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FIG. 25. Final modeling results for the rooms II (top) and IV (bottom) of the high-
school floor experiment.

CONCLUSIONS534

Over the last five years, various partial solutions for automatically generating 3D models of535

buildings using laser scanners have been published. In the case of inhabited, furnished interiors,536

the automatic generation of 3D models is considered challenging because of the large amount537

of information that needs to be processed, the wide variability in room shape and unpredictable538

furniture layout, and the frequent presence of significant clutter and occlusion.539

This paper proposes a hierarchical 3D data processing algorithm that is able, with the help of540

RFID technology, to generate detailed and precise semantic 3D models of furnished, inhabited541

interiors. RFID tags, attached to furniture and scanned at the same time as laser scanning, provide542

access to discriminatory geometric information (contained in the building’s FM database) about543

the furniture present in the scanned room that greatly alleviates the difficulties of recognizing them544

in the point cloud data. This makes automatic modeling process more robust, accurate and faster.545

Altogether, the approach proposed in this paper is capable of recognizing and modeling the546

main structural components of an indoor environment (walls, floors, ceilings), the wall openings547

like doorways and windows, as well as typical furniture, such as tables, chairs and wardrobes. The548

main contributions reported in this paper over those previously reported in (Valero et al. 2012a;549

Valero et al. 2012b) are:550

1. An improved algorithm is proposed that models wall planes more accurately.551

2. B-Rep models of room structures are completed with wall openings, such as windows and552

doorways, and interior ‘free’ columns. In particular, a novel algorithm is presented for the553

recognition of openings based on molding detection.554
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3. The algorithms for recognizing and calculating the pose of furniture in the point cloud are555

improved and detailed.556

4. Regarding the validation of the system, experimentation is extended to larger environments,557

and new assessment procedures are included that further demonstrate the strengths of the558

method.559

Future improvements to the method should be considered in various lines of inquiries. Firstly,560

the efficiency and robustness of the current system needs to be tested through complex scenarios,561

including with the additional presence of Mechanical, Electrical, Plumbing and Fire Protection562

(MEP/FP) components. This will likely result in the need to investigate new detection and seg-563

mentation approaches. Next, the structural modelling approach should be extended to detect and564

model non-planar walls (by design). Secondly, the system currently enables the recognition of565

rather simple, standard pieces of furniture; future work should consider the recognition of other566

pieces like sofas, lamps, and pictures. Thirdly, the generation of the discriminative geometric in-567

formation required to detect the furniture in the 3D point cloud data is currently done manually.568

But, this process could be conducted automatically given the known object type. Finally, our cur-569

rent opening detection and modeling algorithm is particularly sensitive to occlusions, and should570

be revisited. As in (Xiong et al. 2013), our idea is to establish an inference algorithm to precisely571

delimit opening boundaries on the wall.572
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Kwon, S.-W., Bosché, F., Kim, C., Haas, C. T., and Liapi, K. A. (2004). “Fitting range data to prim-636

itives for rapid local 3D modeling using sparse range point clouds.” Automation in Construction,637

13(1), 67 – 81.638

Lu, W., Huang, G. Q., and Li, H. (2011). “Scenarios for applying RFID technology in construction639

project management.” Automation in Construction, 20, 101–106.640

Marques, L., Nunes, U., and de Almeida, A. T. (2002). “Olfaction-based mobile robot navigation.”641

Thin Solid Films, 418(1), 51 – 58 Proceedings from the International School on Gas Sensors in642

conjunction with the 3rd European School of the NOSE Network.643

Mast, M., Burmester, M., Krger, K., Fatikow, S., Arbeiter, G., Graf, B., Kronreif, G., Pigini, L.,644

Facal, D., and Qiu, R. (2012). “User-centered design of a dynamic-autonomy remote interac-645

tion concept for manipulation-capable robots to assist elderly people in the home.” Journal of646

Human-robot interaction, 1(1), 96–118.647

Mortenson, M. (1985). Geometric Modeling. John Wiley and Sons.648

Okorn, B., Xiong, X., Akinci, B., and Huber, D. (2010). “Toward automated modeling of floor649

plans.” Proceedings of the Symposium on 3D Data Processing, Visualization and Transmission.650

Pu, S. and Vosselman, G. (2009). “Knowledge based reconstruction of building models from ter-651

restrial laser scanning data.” ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 575652

– 584.653

Remondino, F., El-Hakim, S., Girardi, S., Rizzi, A., Benedetti, S., and Gonzo, L. (2009). “3D654

virtual reconstruction and visualization of complex architectures.” Proceedings of 3D-ARCH655

2009.656

Rusinkiewicz, S. and Levoy, M. (2001). “Efficient variant of the ICP algorithm.” Proceedings of657

the 3rd International Conference on 3D Digital Imaging and Modeling, 3DIM 01, Quebec City,658

Canada.659

Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz, M. (2008). “Towards 3D point cloud660

based object maps for household environments.” Robotics and Autonomous Systems, 56(11), 927661

32 Valero et al., May 20, 2015



– 941.662

Shi, P., Robinson, G., and Duncan, J. (1994). “Myocardial motion and function assessment using663

4D images.” Proceedings of Visualization in Biomedical Computing, VBC 94, Rochester, USA.664

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). “Indoor segmentation and support665

inference from RGBD images.” Computer Vision ECCV 2012, A. Fitzgibbon, S. Lazebnik, P.666

Perona, Y. Sato, and C. Schmid, eds., Vol. 7576 of Lecture Notes in Computer Science, Springer667

Berlin Heidelberg, 746–760.668

Srinivasa, S., Ferguson , D., Vandeweghe, J. M., Diankov, R., Berenson, D., Helfrich, C., and669

Strasdat, K. (2008). “The robotic busboy: Steps towards developing a mobile robotic home670

assistant.” International Conference on Intelligent Autonomous Systems (July).671

Stamos, I. and Allen, P. (2000). “3-D model construction using range and image data.” Proceedings672

of the IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, 531 –536 vol.1.673

Valero, E., Adán, A., and Cerrada, C. (2012a). “Automatic construction of 3D basic-semantic674

models of inhabited interiors using laser scanners and RFID sensors.” Sensors, 12(5), 5705–675

5724.676

Valero, E., Adán, A., and Cerrada, C. (2012b). “Automatic method for building indoor boundary677

models from dense point cloud collected by laser scanners.” Sensors, 12(12), 16099–16115.678

Valero, E., Adán, A., Huber, D., and Cerrada, C. (2011). “Detection, modeling and classification679

of moldings for automated reverse engineering of buildings from 3D data.” Proceedings of the680

28th International Symposium on Automation and Robotics in Construction. ISARC 2011.681

Wandel, M. R., Lilienthal, A., Duckett, T., Weimar, U., and Zell, A. (2003). “Gas distribution682

in unventilated indoor environments inspected by a mobile robot.” Proceedings of the IEEE683

International Conference on Advanced Robotics (ICAR 2003), Coimbra, Portugal.684

Wang, C., Cho, Y. K., and Kim, C. (2015). “Automatic BIM component extraction from point685

clouds of existing buildings for sustainability applications.” Automation in Construction, 56,686

1–13.687

Wang, J. and Oliveira, M. (2002). “Improved scene reconstruction from range images.” Eurograph-688

ics, 21(3), 521–530.689

Xiao, J., Owens, A., and Torralba, A. (2013). “Sun3d: A database of big spaces reconstructed690

using sfm and object labels.” Computer Vision (ICCV), 2013 IEEE International Conference on,691

1625–1632 (Dec).692

Xiong, X., Adán, A., Akinci, B., and Huber, D. (2013). “Automatic creation of semantically rich693

3D building models from laser scanner data.” Automation in Construction, 31, 325–337.694

33 Valero et al., May 20, 2015


	Overview
	Modeling of room structure
	Floor and ceiling segmentation
	Wall segmentation
	Room boundary B-Rep model
	Modeling of interior columns
	Modeling of wall openings
	Final B-Rep model

	Modeling of furniture
	Tables
	Chairs
	Wardrobe-like furniture
	Paper Baskets

	A simple case: A living room
	Structure
	Furniture

	A more complex case: The first floor of a high school
	Structure
	Furniture


