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Abstract

Biomechanical analysis of construction workers has been considerably im-
proved with the development of wearable sensors. Information delivered by
these systems is playing an important role in the evaluation of postures as well
as in the reduction of work-related musculoskeletal disorders (WRMSDs). In
this article, we present a novel system and data processing framework to de-
liver intuitive and understandable motion-related information about workers.
The system uniquely integrates Inertial Measurement Unit (IMU) devices in
a wireless body area network, and the data processing uses a robust state
machine -based approach that assesses inadequate working postures based on
standard positions defined by the International Organization for Standard-
ization (ISO). The system and data processing framework are collectively
validated through experiments carried out with college trainees conducting
typical bricklaying tasks. The results illustrate the robustness of the sys-
tem under demanding circumstances, and suggest its applicability in actual
working environments outside the college.
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1. Introduction1

Injuries and poor occupational health resulting from inadequate work-2

ing conditions impact the wellbeing of the working population as well as3

countries’ economies. Work-Related Musculoskeletal Disorders (WRMSDs)4
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are injuries affecting muscles, joints and tendons, that result from repeated5

awkward postures and handling tasks, such as: forceful exertions in lifting or6

carrying loads, bending and twisting the back or limbs, exposure to vibration7

or repetitive movements.8

In the construction sector, workers are particularly at risk of WRMSDs9

because of their high exposure to awkward postures, which are sometimes10

held for long periods of time, and also to carry heavy loads. According11

to Labour Force Survey and Reporting of Injuries, Diseases and Dangerous12

Occurrences Regulations (RIDDOR), in the period 2013-2016 in the UK, 64%13

of self-reported work-related illnesses were related to WRMSDs, resulting in14

1.2 million days off per year. Amongst construction trades, masonry and15

concrete workers appear the most at risk, with more than 110 cases per 10,00016

employees working full time [21]. Furthermore, carpet and tile installers are17

on their knees, crouching or stooping more than the 80% of the time, and18

bricklayers spend 93% of their time bending and twisting the body or doing19

repetitive motions [21].20

These alarming statistics, along with economic and demographic pres-21

sures, have pushed the construction sector to consider occupational health22

as an increasingly important issue, worth the same amount of attention as23

safety. In a survey by the Constructing Better Health (CBH) Scheme, 97% of24

the respondents agreed or strongly agreed that health is taken more seriously25

than 10 years ago [5]. However, in a more recent study [7], 84% of respon-26

dents thought that more needs to be done to improve the implementation27

of occupational health in the industry, and 85% of them agreed that there28

is a need for industry-wide data to be analysed to spot health trends in the29

industry. When it comes to WRMSDs, one of the main issue is the lack of30

reliable and scalable approach to assess their risks.31

In this paper, we present a new strategy and system to deliver intuitive32

and understandable motion-related information about workers in the con-33

struction. Accordingly, this paper is structured as follows. Section 2 reviews34

existing and recent initiatives by governments, companies and universities to35

develop different strategies to assess WRMSDs risks. In Section 3, we intro-36

duce our recently developed system to track the motion of workers, based on37

wearable Inertial Measurement Units (IMUs) connected through a wireless38

body area network; we call this system Activity Tracking with Body Area39

Network (AT-BAN). In Section 4, we then present our novel algorithm to40

automatically recognise awkward postures in the collected IMU data. Sub-41

sequently, Section 5 reports experimental results on the assessment of brick-42
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laying tasks. Finally, Section 6 concludes the article and suggests future43

developments of the proposed system.44

2. Background45

The analysis of body motion has been tackled by experts during the last46

century for different purposes. Lillian and Frank Gilbreth were pioneers of47

motion study [6] in the field of industrial management. Focused on pro-48

ductivity and efficiency, they reduced all the hand motions carried out by49

workers in assembly tasks into some combinations of basic operations. They50

studied the basic operations (or ‘therbligs’) involved in tasks of bricklaying,51

reducing the number of required movements from 18 to 4.5 and increasing52

the number of laid bricks by 3 times [26].53

Later on, various public agencies, companies and researchers have been54

involved in the creation of tools and techniques to reduce health and safety55

risks in the workplace, especially WRMSDs. Generally, they study the mo-56

tion of workers during their working day. Amongst the various guidelines,57

MAC [22] and ART [23] were developed by the British HSE for assessing58

manual handling and repetitive tasks. OWAS [13] was designed to modify59

the production line of a steel manufacturing company; and RULA [15] and60

REBA [14] for upper limbs and entire body assessment, respectively. Almost61

all these techniques are based on the visual analysis of the motion of workers62

by experts on ergonomics, who typically fill out a questionnaire or form to63

assess the performance [2]. Although these methods have proven to be some-64

what effective, they are neither objective nor precise, because they generally65

rely on some form of a subjective assessment of the assessor, which will likely66

to vary with experience and differ from one expert to another (subjectivity).67

During the last decades, aiming to improve the repeatability of tests and68

deliver more accurate and precise results, numerous measuring devices have69

been proposed and investigated for biomechanical analysis in construction70

and other trades. Among those modern devices, marker-based optical motion71

tracking systems [8] have been widely used due to their precision. Trackers72

can be easily fit to the workers body, making systems wearable even in the73

jobsite during a working session. Another advantage of their wearability74

is that all body parts can be measured simultaneously, which enables more75

systematic evaluation of postures, something almost impossible for an expert76

at first sight. Alternatively, markerless optical motion tracking systems have77

been investigated using video cameras [11] or depth cameras [17]. These78
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systems have been also proved useful to conduct studies of postures and79

classify different movements. However, a major practical limitation of all80

these vision-based systems is that a direct line of sight is required to register81

the movements. In a similar manner, devices such as depth cameras, based on82

infrared projection systems, are too sensitive to varying lighting conditions83

and are not recommended for use outdoors. Their short range of operation84

as well as their narrow field of view are also limitations to be considered.85

Recently, the miniaturisation of electromechanical systems has encour-86

aged the development of small wearable devices to register the movements of87

different parts of the body. These miniature devices integrate several sensors88

like accelerometers, magnetometers and gyroscopes in so-called IMUs. In89

addition to delivering results potentially as precise as optical systems, IMU90

systems are fully worn and so do not require any line of sight. Numerous91

works have been published in recent years on monitoring of movements of92

workers from different trades using IMUs. In 2014, Vanveerdeghem et al. [25]93

presented an IMU wearable system to control the motion of firefighters and94

detect if they are lying, walking or running. Rawashdeh et al. [16] used IMUs95

placed on the arms of athletes to help prevent injuries in overhead sports.96

In the field of construction, several researchers have developed IMU-based97

systems to study the behaviour of workers around the jobsite. Joshua and98

Varghese [12] proposed the use of IMUs data to classify workers activity as99

effective, ineffective or contributory. Very recently, Alwasel et al. [1] used a100

commercial wireless set of IMU sensors and the 3D SSPP software package101

1 to estimate forces and moments performed by the major body joints of102

bricklaying trainees and workers. That work relates very much to the ap-103

proach presented in this paper, with similar conclusions drawn on the links104

between experience, productivity and ergonomic safety. Finally, Yan et al.105

[27] have developed a warning system for construction workers to prevent106

WRMSDs. They attach two wireless IMU sensors to the workers head and107

back to infer the angles described by head, neck and trunk. However, the108

scope of their setup is limited, since they do not consider the evaluation of109

limbs movement. Another approach is presented in [3, 4], in which the au-110

thors combine video with physiological status monitoring (PSM) technology111

and ultra wideband (UWB) to track the movements of workers and relate112

1Center for Ergonomics, University of Michigan, https://c4e.engin.umich.edu/tools-
services/3dsspp-software/.
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their physical characteristics to their position in the environment.113

Selecting and employing internationally standardised rules by the Inter-114

national Organization for Standardization (ISO) is a first step towards a set115

of uniform criteria to evaluate body motions in the workplace and helps re-116

duce the impact of WRMSDs [27]. For example, ISO 11228 [10] relates to117

the application of forces and loads handling, and ISO 11226 [9] is oriented118

to the acceptability of static working postures. Note that, although this119

paper is linked to tasks involving manual handling, its main objective is to120

study the postures of workers during their working day. For this reason,121

we focus on standard ISO 11228, which itself also refers to ISO 11226 for122

recommendations concerning working postures.123

In the following, we present a new strategy to deliver intuitive and un-124

derstandable motion-related information about workers in the construction125

field. Building on the approach initially presented in [24] and using the AT-126

BAN system, a scalable wireless body area network of IMUs developed by127

the research team, this novel approach evaluates the movement of several128

parts of the body and identifies postures of interest during bricklaying tasks,129

which subsequently provides information oriented to minimise the likelihood130

of WRMSDs. Unlike previous works [27], this system covers all the main131

limbs of workers and is able to register their activity over an entire day. Al-132

though the results presented in this paper correspond to the evaluation of133

the system for bricklaying tasks, the scalability of the system (both hardware134

and software) facilitates its use for different activities and trades.135

3. Overview of the system136

With the objective of recognising key postures and movements of workers,137

we have developed the Activity Tracking with Body Area Network (AT-BAN)138

system. This system has already been presented in previous works [20] [19],139

so we only briefly summarise it here.140

Compact wearable IMU devices of dimensions 6 x 4 x 1.5cm are wirelessly141

connected to a work station, delivering a real-time, precisely synchronised142

and accurate stream of data, comprising: acceleration, magnetic heading143

and angular velocity, at a sampling rate up to 50 Hz. These sensors are144

attached to the subject’s body by means of elastic straps, as shown in Figure145

1(a), fitting tightly to the limbs, to prevent slippage, which could otherwise146

result in incorrect recognition of postures and movements. The number of147

sensors can vary, being adapted to the needs of the particular application.148
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The system used in the experiments reported here employs 8 sensors, and149

can be operated continually for approximately 8 hours without the need for150

a recharge. The 8 sensors are placed in the vulnerable parts of the body151

associated with the bricklaying activity, i.e. upper/lower back, arms and152

upper/lower legs [21]. This placement allows us to examine the back, shoulder153

and knee activities in detail.154

(a) (b)

Figure 1: (a) Location of AT-BAN sensors on the body. (b) Set up of the system.

In addition to the data obtained from the sensors, working sessions were155

recorded with a video camera (see Figure 1(b)). The acquisition of visual in-156

formation has two purposes: (1) providing a visual reference point to evaluate157

the performance of the algorithm developed for postures identification; (2)158

evaluating the quantity of work carried out (e.g. number of bricks laid down159

over a specific period), so that health performance can be gauged against160

productivity. It must be highlighted that the video is not used anywhere in161

the quantification of the body motions.162

The subsequent data processing technique, the main contribution re-163

ported in this paper, is described in Section 4.164

4. Analysis of postures165

4.1. State Machine166

Every task performed by humans involves multiple body parts moving167

in synchronization. Therefore, assessing the movement of a person requires168
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monitoring various body parts simultaneously. The accuracy and objectivity169

of current evaluation methods have been improved with the use of sensors170

attached to the body aiming to acquire data related to movement. However,171

data obtained from such sensors is a set of continuous/analog signals that172

can be displayed at best as a set of curves (see Figure 2(a)) that need to173

be simultaneously analysed and interpreted. Such interpretation is complex,174

even for professionals.175

Thus, the first aim of this approach is to discretise the angular values176

calculated after the data obtained from the sensors. For each instant of time,177

analog angular values are converted to discrete data following the principles178

of a finite-state: each sensor output will take a state depending on its present179

and past states. As illustrated in Figure 2(b), more understandable plots are180

delivered after processing the information.181

(a) (b)

Figure 2: Angles of several sensors attached to the body of a worker during bricklaying
tasks. (a) Continuous signal. (b) Discrete signal. From top to bottom: back, arms and
upper legs (red for right limbs and green for left ones)

Depending on the rotation of one or several body joints with respect to182

an initial orthostatic position (i.e. standing), each body part is assigned a183

state. For example, considering the flexion of an arm, this can be ‘slightly184

elevated’, ‘elevated’ or ‘too elevated’. However, these are fuzzy terms that185

need to be defined by certain thresholds to provide an objective assessment.186

7



Instead, we use angular thresholds specified in the standard ISO 11226 (see187

Section 2). Amongst the postures evaluated in that standard, our study more188

specifically focuses on (Figure 3): trunk inclination, knee flexion, kneeling,189

and upper arm elevation, that are all determined by an angle. Note that these190

motions are related to the joints most affected by WRMSDs as mentioned, as191

discussed in Section 3. The angular thresholds corresponding to those joints192

are summarised in Table 1.193

Figure 3: Basic movements and representative angle

These three different angles are measured by the AT-BAN system at194

50Hz, and raw values are filtered using a median filter. The angular values195

are then compared with a reference value, set from the initial standing-up196

posture of the worker, to establish each individual joint state, as shown on197

Table 1. To respond to sensor signal noise, we accept a change in the state198

machine of a primary body position only if it is held for at least one second.199

This approach is similar in effect to a Schmitt trigger [18]. The result of this200

state evaluation process is illustrated in Figure 4, where angles and state201

machine values are noted for a sensor attached to the upper back. Note that202

values for α are calculated as the difference between the angles plotted in the203

graph and the reference initial value for that variable, which is around 90◦
204

in this particular case.205

Following the idea of Gilbreth, this study interprets each task or activity206

as a combination of simple movements performed by several body parts. For207

example, the WRMSD risks associated to a task of spreading mortar on a row208

of bricks can be seen as a mainly involving and combining trunk inclination209

(back bending), knee flexion (squatting) and upper arm elevation. Therefore,210

all the primary position states described in Table 1 are combined to infer211

higher-level body postures, such as the twelve postures shown in Figure 5.212

Table 2 illustrates how some higher-level postures are inferred from primary213

position states.214
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Primary body
part position

State Angle Definition

-1 α < 0◦
Trunk backward inclination.
Not recommended position

0 0◦ ≤ α < 20◦ Acceptable trunk inclination

Trunk inclination 1 20◦ ≤ α < 60◦

Trunk forward inclination.
The holding time is evaluated
according t > −0.075α+ 5.5

where t is time in minutes and α is
angle in degrees. If inequality is

true, not recommended

2 α ≥ 60◦
Trunk backward inclination.
Not recommended position

0 β > 140◦ Acceptable knee flexion

Knee flexion 1 90◦ < β ≤ 140◦
Extreme knee flexion. Not

recommended position

0 β > 90◦ See knee flexion

Kneeling 1
β ≤ 90◦ (and calf
parallel to floor)

Just one leg kneeling. Squatting
movement considered

2
β ≤ 90◦ (and calf
parallel to floor)

Kneeling

0 0◦ ≤ γ < 20◦ Acceptable upper arm elevation

Arm elevation 1 20◦ ≤ γ < 60◦

The holding time is evaluated
according t > −0.05γ + 4.

If inequality is true,
not recommended

2 γ ≥ 60◦ Not recommended position

Table 1: Static primary positions according to ISO 11226 standard

4.2. Performance Assessment Metrics/Scores215

Results obtained during the joint angle and posture state classification216

stages are complex to interpret overall because of the amount of information217

that is generated. As a result, we defined Performance Assessment Metrics, or218

Scoring system, that summarises detailed joint and posture state information219

in one overall Posture score (or MSD Risk Score), Spos. Furthermore, we220

define a Productivity Score, Sp, so that posture/WRMSD performance can221

be interpreted more objectively in light of the actual work performed by the222

worker. Indeed, assessing health and safety performance (here MSD) really223
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Figure 4: Angles and states of an upper back sensor. Some segments for different states
are highlighted

Figure 5: Identified postures

only makes in comparison with productivity. Taking the extreme case of a224

worker doing nothing but simply standing for 30min, they would have a great225

posture/MSD score; but clearly this great score should be contrasted with the226

total lack of work performed. The Productivity Score and Posture Score are227

easily presented to and therefore understandable by users and stakeholders.228

For the Productivity Score Sp, we simply count the number of bricks laid229

down by the worker in visualising the video (this can be done rapidly by230

looking at the start and end state of the built wall at the beginning and end231
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Trunk
Inclination

Knee
Flexion

Kneeling
Upper Arm
Elevation

Back bending +
Squatting

2 1 0 0

Squatting +
Arm elevation

0 1 0 1

Back bending +
Kneeling

2 0 2 0

Table 2: Inferring posture states (Figure 5) from primary position states (Table 1).

of the video, respectively). Equation 1 is then used to calculate Sp. In this232

equation, nb is the number of bricks per minute laid down by the worker, cb is233

an adjustment factor that considers the weight of the bricks (or blocks) and234

the number of items laid down by an average worker, and cc is a functional235

efficiency factor that reflects the complexity of the wall (e.g. fine works,236

facing bricks, common bricks, . . . ). Sp increases with productivity.237

Sp = nbcbcc (1)

The Posture Score Spos is calculated as a weighted average of the state238

machines for all measured body part positions, i.e. all sensors, as summarised239

in Equation 2 where: |kij| is the absolute value of the state machine for the240

joint angle (i.e. sensor) i during the interval j; ᾱij (or alternatively β̄ij or241

γ̄ij) is the mean value of the joint angle αi during the interval j; and tij is242

the duration of the interval j for the joint i. Spos theoretically increases with243

the risk of developing MSDs.244

Spos =

∑m
i=1

(∑ni

j=1 |kij| ᾱijtij

)
∑m

i=1

(∑ni

j=1 tij

) (2)

5. Experiments245

Aiming to validate the proposed AT-BAN system and the new posture246

detection algorithm, experiments have been conducted at Forth Valley Col-247

lege (FVC), a Scottish further education college. The set of experiments248

presented in this paper focused on bricklaying apprentices, the construction249
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trade considered to have the highest exposure to body bending/twisting and250

repetitive motions [21]. In this section, detailed information about data ac-251

quisition and analysis is provided.252

5.1. Data Acquisition253

Six male 1st and 2nd year persons, aged 16-34, between 1.70 and 1.95m tall254

and not seriously injured in the last year, participated in the trials. All were255

equipped with a set of 8 AT-BAN sensors, as shown in Figure 1. The test256

subjects performed routine tasks such as: carrying and spreading mortar and257

moving and lying different kind of bricks (20 and 14 kg blocks and standard258

2kg bricks) in the college workshops, replicating real working environments259

and using standard tools and materials. Their movements were recorded for260

20-minute sessions.261

Together with the sensor data, synchronised video streams were also262

recorded. These are used to establish visual ground truth to qualitatively263

assess the performance of the proposed algorithms and to produce easily un-264

derstandable results for the users of the system. Furthermore, the videos are265

used to extract the amount of work achieved during the recorded sessions, so266

as to obtain some productivity performance information and score.267

5.2. Data Analysis268

The generation of a ground truth model to evaluate the proposed system269

would not be a trivial task at all. Even with video recordings and expert270

assessment – i.e. current best practice – a reliable identification of postures271

(e.g. as defined by ISO standards) would be hard to achieve. In fact, this272

method can be argued to be even less reliable than our proposed system.273

Using an optical tracking system would probably be the ideal approach to274

obtain comparative ground truth information for the individual angles. But,275

the equipment could not be obtained and installed in the college lab where276

the experiments were conducted. Furthermore, those systems are not perfect277

either and may not have worked well with the workers wearing their typical278

working outfits and PPE. As a result, we must rely for now on a qualitative279

analysis of the performance of our system by comparing the automatically280

detected motions with those visible in the synchronised video. For example,281

we refer the reader to one of the sessions results in the videos attached to282
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this manuscript 2 3.As can be seen, all the steady primary position states283

are properly identified. A short delay in the detections can be observed284

during noticeable changes in the posture. This happens because of the time285

threshold we employ to accept changes in primary body positions (see Section286

4.1). This may arguably lead to some false negative posture detections when287

postures are held only for very short periods (such cases are visible a few times288

in the videos). But, the time threshold also helped smooth measurement289

errors or spikes and therefore prevent other detection errors.290

Remarkable information related to both posture and productivity can be291

extracted from the performed trials. Table 3 summarises descriptive param-292

eters along with productivity and posture obtained for the 6 test subjects.293

While the number of bricks handled in each experiment is not very large, the294

productivity achieved by the test subjects clearly reflects experience gained295

over time, with the test subjects with more than 12 months of experience296

showing similar productivity to that of professionals, that can lay between 15297

and 20 20kg-concrete blocks per hour (20 to 30 in the case of 14kg blocks).298

Regarding productivity, the results indicate that the more experienced299

test subjects spend less time per brick in postures not recommended by the300

ISO 11226 standard. Furthermore, it can be observed how test subjects tend301

to bend their backs, aiming to increase productivity, instead of approaching302

blocks with more favourable postures (i.e. squatting). If we extrapolate303

the observed back bending times to a complete working day, even if we do304

not consider some factors affecting workers’ performance, such as fatigue305

or recovery time, we find that the persons would cumulatively spend in this306

detrimental posture durations ranging between 4.5 and 7 hours. These habits307

will most likely entail back problems and days away from work in the future.308

The graphs in Figure 6 show the productivity and posture scores obtained309

for the 6 test subjects. While productivity scores increase with experience,310

it is interesting to note how posture scores do not show such a correlation.311

Note that the recently published work of Alwasel et al. [1] reaches similar312

conclusions. This small or even lack of improvement in posture scores over313

time is interesting in light of the steady improvement in productivity, which314

could be attributed to insufficient training about harmful postures and best315

practices.316

2http://bit.ly/7C-FVC
3http://bit.ly/82-FVC
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Test subjects 1 2 3 4 5 6
Experience (months) 30 24 3 3 18 18
Trial duration (min) 20 20 20 20 20 20
Brick weight (kg) 20 20 2 2 14 14
Number of handled bricks 11 12 7 5 6 8
Effective time per brick (s) 82 85 180 240 160 120
Bending time per brick (s) 79 84 151 141 159 119
Kneeling time per brick (s) 0 0 0 85 0 0
Squatting time per brick (s) 0 8 0 17 33 3
Arm elevation time per brick (s) 3 2 87 45 7 8

Table 3: Descriptive parameters along with productivity and posture metrics obtained for
the 6 test subjects during bricklaying activities.

5.3. Data Visualisation317

As illustrated in Figure 7 and the two videos attached to this manuscript,318

two different types of visual outputs have been developed to ease the review319

of the results by non-technical experts.320

The first visual output is a video, showing the higher-level posture de-321

tections over time in synchronisation with the captured video stream. A red322

line moves along the coloured bars, showing the progress of the activity and323

indicating the identified primary positions. On the right-hand side, a man-324

nequin is used to report the high-level posture detections in real-time. The325

comparison of this mannequin with the true posture of the worker visible in326

the video has shown to be valuable not only to our internal validation of the327

AT-BANs performance, but also to demonstrate its performance to project328

partners like the staff of the college. It is important to highlight that this329

visual output is only available for cases when video recording is used, i.e.330

for stakeholder engagement. In general contexts (e.g. on a real construction331

site with the worker moving locations during an entire day), video recording332

would not be feasible, so that this output would not be produced.333

The second output summarises the results obtained over the recorded334

session, delivering information about the number of detections of and time335

spent in each primary positions during the studied session. In contrast with336

the first visual output, this second one is obtained from the processed IMU337

data only, and so is provided when using the system in any context (e.g. on338

a real construction site with the worker moving locations during an entire339
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(a) Productivity scores.

(b) Posture/MSD scores.

Figure 6: Productivity scores (a) and Posture (or MSD risk) scores (b) for the 6 test
subjects. The numbers refer to each person ID in Table 3.

day).340

6. Conclusions341

The continuous assessment of workers body motion in the working envi-342

ronment can help identify and mitigate the risks of WRMSDs and improve343

their wellbeing. Although governments, public bodies and researchers have344
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(a) Frame of the video enriched with the identified motions.

(b) Left: Timeline of a trial session with identified motions. Right:
Percentage of time assigned to each primary position.

Figure 7: Visual outputs presenting the session results to non-technical users like trainees
and staff of the college.

developed methods to evaluate the movements of workers and correct their345

movements toward a healthier performance, most of them are based on visual346

observations and hardly depend on the experience of the assessor.347

A novel and more automated approach is presented in this paper to iden-348

tify detrimental postures in construction jobsites. This method, based on349

the use of a wearable wireless network of IMU devices, the AT-BAN system,350

discriminates between basic postures and identify those that are prone to351

increase the risk of WRMSDs, according to existing ISO standards.352

Angular values used as reference for this work have been extracted from353
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the standard ISO 11226, which contains a collection of tables, diagrams and354

equations to determine the acceptability of static working postures. Even355

if there exists a standard devoted to dynamic activities (ISO 11228), rules356

detailed in that document are oriented towards parameters indirectly related357

to ergonomics and postures, such as loads or repetitions. This highlights a358

gap in standards available for analysing dynamic activities, which is in fact359

likely due to the impossibility to establish standards without adequate and360

stable technologies that can capture data with the required accuracy. The361

system presented in this paper is intended to push the boundaries further,362

to eventually enable the development of such standards.363

To test and validate the proposed tool, several working sessions were364

recorded with actual trainees in a local college. Results show that harmful365

postures can be detected, and suggest that, while productivity performance366

seems to improve with experience (as expected), our posture score suggests367

no improvement with experience. However, these results were only obtained368

with 6 test subjects and more trials, involving a larger population and con-369

sidering both novice and experts workers both in the college and on site, need370

to be performed in order to confirm those results and the general usability371

of our system.372

Future works will consider the use of loads for analysis of dynamic pos-373

tures, and the use of the system will be investigated for other construction374

trades (e.g. painting and decorating). We will also look into integrating375

sensors to tools to monitor a wider range of activities and health issues (e.g.376

vibrations). Finally, through more trials, we should be able to develop a377

dataset large enough to investigate machine learning algorithms to more po-378

tentially more robustly identify postures and motions.379
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